cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082522 Numbers of the form p^(2^k) with p prime and k>0.

Original entry on oeis.org

4, 9, 16, 25, 49, 81, 121, 169, 256, 289, 361, 529, 625, 841, 961, 1369, 1681, 1849, 2209, 2401, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6561, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 14641, 16129, 17161, 18769, 19321, 22201, 22801
Offset: 1

Views

Author

Reinhard Zumkeller, May 11 2003

Keywords

Comments

Every positive square (A000290 without 0) is the product of a unique subset of these numbers. The lexicographically earliest (when ordered) minimal set of generators for the positive squares as a group under A059897(.,.); the intersection of A050376 and A000290. - Peter Munn, Aug 25 2019

Examples

			3^(2^2) = 81, therefore 81 is a term.
		

Crossrefs

Programs

  • PARI
    lst(lim)=my(v=List(apply(n->n^2,primes(primepi(sqrtint(lim))))), t);forprime(p=2,(lim+.5)^(1/4),t=p^2;while((t=t^2)<=lim,listput(v,t)));vecsort(Vec(v)) \\ Charles R Greathouse IV, Apr 10 2012
    
  • Python
    from sympy import primepi, integer_nthroot
    def A082522(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x,1<Chai Wah Wu, Feb 19 2025

Formula

a(n) = A050376(A181970(n)) = A050376(n)^2. - Vladimir Shevelev, Apr 05 2013
a(n) ~ n^2 log^2 n. - Charles R Greathouse IV, Oct 19 2015
Sum_{n>=1} 1/a(n) = Sum_{k>=1} P(2^k) = 0.53331724743088069672..., where P is the prime zeta function. - Amiram Eldar, Nov 26 2020