A082522 Numbers of the form p^(2^k) with p prime and k>0.
4, 9, 16, 25, 49, 81, 121, 169, 256, 289, 361, 529, 625, 841, 961, 1369, 1681, 1849, 2209, 2401, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6561, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 14641, 16129, 17161, 18769, 19321, 22201, 22801
Offset: 1
Keywords
Examples
3^(2^2) = 81, therefore 81 is a term.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Group.
- Eric Weisstein's World of Mathematics, Prime Power.
- Wikipedia, Generating set of a group.
Programs
-
PARI
lst(lim)=my(v=List(apply(n->n^2,primes(primepi(sqrtint(lim))))), t);forprime(p=2,(lim+.5)^(1/4),t=p^2;while((t=t^2)<=lim,listput(v,t)));vecsort(Vec(v)) \\ Charles R Greathouse IV, Apr 10 2012
-
Python
from sympy import primepi, integer_nthroot def A082522(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(integer_nthroot(x,1<Chai Wah Wu, Feb 19 2025
Formula
a(n) ~ n^2 log^2 n. - Charles R Greathouse IV, Oct 19 2015
Sum_{n>=1} 1/a(n) = Sum_{k>=1} P(2^k) = 0.53331724743088069672..., where P is the prime zeta function. - Amiram Eldar, Nov 26 2020
Comments