cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082552 Number of sets of distinct primes, the greatest of which is prime(n), whose arithmetic mean is an integer.

Original entry on oeis.org

1, 1, 2, 5, 6, 12, 21, 31, 58, 111, 184, 356, 665, 1223, 2260, 4227, 7930, 15095, 28334, 53822, 102317, 195012, 373001, 714405, 1370698, 2633383, 5067643, 9765457, 18846711, 36413982, 70431270, 136391723, 264384100, 512959093, 996173830
Offset: 1

Views

Author

Naohiro Nomoto, May 03 2003

Keywords

Comments

The sum of the first 23 primes gives 874 = 23*38, see A045345. - Alois P. Heinz, Aug 02 2009

Examples

			a(4) = 5: prime(4) = 7 and the five sets are (5+7)/2 = 6, 7/1 = 7, (3+7)/2 = 5, (2+3+7)/3 = 4, (3+5+7)/3 = 5.
		

Crossrefs

Programs

  • Maple
    b:= proc(t,i,m,h) option remember; if h=0 then `if` (t=0, 1, 0) elif i<1 or h>i then 0 else b (t, i-1, m, h) +b((t+ithprime(i)) mod m, i-1, m, h-1) fi end: a:= n-> add(b(ithprime(n) mod m, n-1, m, m-1), m=1..n): seq (a(n), n=1..40);  # Alois P. Heinz, Aug 02 2009
  • Mathematica
    f[n_] := Block[{c = 0, k = n, lst = Prime@ Range@n, np = Prime@n, slst}, While[k < 2^n, slst = Subsets[lst, All, {k}]; If[Last@slst == np && Mod[Plus @@ slst, Length@slst] == 0, c++ ]; k++ ]; c]; Do[ Print[{n, f@n} // Timing], {n, 24}] (* Robert G. Wilson v *)

Extensions

a(22)-a(24) from Robert G. Wilson v, Jan 19 2007
Corrected a(23) and extended by Alois P. Heinz, Aug 02 2009