A082553 Number of sets of distinct positive integers whose geometric mean is an integer, the largest integer of a set is n.
1, 1, 1, 3, 1, 1, 1, 3, 7, 1, 1, 7, 1, 1, 1, 9, 1, 29, 1, 3, 1, 1, 1, 31, 15, 1, 87, 3, 1, 1, 1, 115, 1, 1, 1, 257, 1, 1, 1, 17, 1, 1, 1, 3, 21, 1, 1, 519, 23, 141, 1, 3, 1, 847, 1, 19, 1, 1, 1, 215, 1, 1, 27, 1557, 1, 1, 1, 3, 1, 1, 1, 2617, 1, 1, 3125, 3, 1, 1
Offset: 1
Keywords
Examples
a(4) = 3: the three sets are {4}, {1, 4}, {1, 2, 4}.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..134
- Wikipedia, Geometric mean
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&IntegerQ[GeometricMean[#]]&]],{n,15}] (* Gus Wiseman, Jul 19 2019 *)
-
PARI
{ A082553(n) = my(m,c=0); if(issquarefree(n),return(1)); m = Set(vector(n-1,i,i)); forprime(p=sqrtint(n)+1,n, m = setminus(m,vector(n\p,i,p*i)); if(Mod(n,p)==0, return(A082553(n\p)) ); ); forvec(v=vector(#m,i,[0,1]), c += ispower(n*factorback(m,v),1+vecsum(v)) ); c; } \\ Max Alekseyev, Aug 31 2013
-
Python
from sympy import factorint, factorial def make_product(p, n, k): ''' Find all k-element subsets of {1, ..., n} whose product is p. Returns: list of lists ''' if n**k < p: return [] if k == 1: return [[p]] if p%n == 0: l = [s + [n] for s in make_product(p//n, n - 1, k - 1)] else: l = [] return l + make_product(p, n - 1, k) def integral_geometric_mean(n): ''' Find all subsets of {1, ..., n} that contain n and whose geometric mean is an integer. ''' f = factorial(n) l = [[n]] #Find product of distinct prime factors of n c = 1 for p in factorint(n): c *= p #geometric mean must be a multiple of c for gm in range(c, n, c): k = 2 while not (gm**k%n == 0): k += 1 while gm**k <= f: l += [s + [n] for s in make_product(gm**k//n, n - 1, k - 1)] k += 1 return l def A082553(n): return len(integral_geometric_mean(n)) # David Wasserman, Aug 02 2019
Extensions
a(24)-a(62) from Max Alekseyev, Aug 31 2013
a(63)-a(99) from David Wasserman, Aug 02 2019
Comments