A082576 Numbers k such that k^k has final digits the same as all the digits of k.
1, 5, 6, 9, 11, 16, 21, 25, 31, 36, 41, 49, 51, 56, 57, 61, 71, 75, 76, 81, 91, 93, 96, 99, 101, 125, 151, 176, 193, 201, 249, 251, 301, 351, 375, 376, 401, 451, 499, 501, 551, 557, 576, 601, 625, 651, 693, 701, 749, 751, 776, 801, 851, 875, 901, 951, 976, 999
Offset: 1
Examples
9^9 = 387420489 ends in 9, so 9 is a term. 11^11 = 285311670611 ends in 11, so 11 is a term.
References
- Suggested by Herb Conn.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Shyam Sunder Gupta, Do You Know, entry for 24 March 2025.
- Index entries for sequences related to automorphic numbers
Crossrefs
Cf. A002283.
Programs
-
Maple
a:= proc(n) option remember; local k; for k from 1+ a(n-1) while k&^k mod (10^length(k))<>k do od; k end: a(1):=1: seq(a(n), n=1..100); # Alois P. Heinz, Jun 27 2013 select(n -> n&^n mod 10^(1+ilog10(n)) = n, [$1..1000]); # Robert Israel, Mar 04 2016
-
Mathematica
Select[Range@ 1000, Function[k, Take[IntegerDigits[#^#], -Length@ k] == k]@ IntegerDigits@ # &] (* Michael De Vlieger, Mar 04 2016 *) Select[Range[1000],PowerMod[#,#,10^IntegerLength[#]]==#&] (* Harvey P. Dale, Dec 21 2019 *)
-
PARI
for (d = 1, 4, for (i = 10^(d - 1), 10^d - 1, x = Mod(i, 10^d); if (x^i == x, print(i)))) \\ David Wasserman, Oct 27 2006
-
PARI
is(n)=my(d=digits(n));Mod(n,10^#d)^n==n \\ Charles R Greathouse IV, Jan 02 2013
-
PARI
select( {is_A082576(n)=Mod(n,10^logint(10*n,10))^n==n}, [1..999]) \\ M. F. Hasler, Jun 03 2025
-
Python
from itertools import count def A082576_gen(): # generator of terms yield from (1, 5, 6, 9, 11, 16, 21, 25, 31, 36, 41, 49, 51, 56, 57, 61, 71, 75, 76, 81, 91, 93, 96, 99) for i in count(100,100): for j in (1, 25, 49, 51, 57, 75, 76, 93, 99): m = i+j if pow(m,m,10**(len(str(m)))) == m: yield m A082576_list = list(islice(A082576_gen(),50)) # Chai Wah Wu, Jun 02 2024
Formula
{ k : k^k mod 10^(1+floor(log_10(k))) = k }. - Jon E. Schoenfield, Jun 02 2024
Extensions
More terms from David Wasserman, Oct 27 2006
Comments