cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082576 Numbers k such that k^k has final digits the same as all the digits of k.

Original entry on oeis.org

1, 5, 6, 9, 11, 16, 21, 25, 31, 36, 41, 49, 51, 56, 57, 61, 71, 75, 76, 81, 91, 93, 96, 99, 101, 125, 151, 176, 193, 201, 249, 251, 301, 351, 375, 376, 401, 451, 499, 501, 551, 557, 576, 601, 625, 651, 693, 701, 749, 751, 776, 801, 851, 875, 901, 951, 976, 999
Offset: 1

Views

Author

Gary W. Adamson, May 07 2003

Keywords

Comments

k^k^k also has the same final digits as k. - Ed Pegg Jr, Jun 27 2013
For any positive integer r the sequence contains 10^r-1. - Reiner Moewald, Feb 14 2016
From Robert Israel, Mar 04 2016: (Start)
All terms > 96 end in 01, 25, 49, 51, 57, 75, 76, 93 or 99.
It appears that except for 1, 5, 6, 9, 57 and 93, if k is a term then so is the number obtained from k by deleting its first digit. (End)
The only known composite and prime numbers such that n^n ends in twice the string of digits of n are 16 and 499, respectively [Gupta, 2025]. (Checked up to 10^9.) - M. F. Hasler, Jun 03 2025

Examples

			9^9 = 387420489 ends in 9, so 9 is a term.
11^11 = 285311670611 ends in 11, so 11 is a term.
		

References

Crossrefs

Cf. A002283.

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from 1+
          a(n-1) while k&^k mod (10^length(k))<>k do od; k
        end: a(1):=1:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 27 2013
    select(n -> n&^n mod 10^(1+ilog10(n)) = n, [$1..1000]); # Robert Israel, Mar 04 2016
  • Mathematica
    Select[Range@ 1000, Function[k, Take[IntegerDigits[#^#], -Length@ k] == k]@ IntegerDigits@ # &] (* Michael De Vlieger, Mar 04 2016 *)
    Select[Range[1000],PowerMod[#,#,10^IntegerLength[#]]==#&] (* Harvey P. Dale, Dec 21 2019 *)
  • PARI
    for (d = 1, 4, for (i = 10^(d - 1), 10^d - 1, x = Mod(i, 10^d); if (x^i == x, print(i)))) \\ David Wasserman, Oct 27 2006
    
  • PARI
    is(n)=my(d=digits(n));Mod(n,10^#d)^n==n \\ Charles R Greathouse IV, Jan 02 2013
    
  • PARI
    select( {is_A082576(n)=Mod(n,10^logint(10*n,10))^n==n}, [1..999]) \\ M. F. Hasler, Jun 03 2025
    
  • Python
    from itertools import count
    def A082576_gen(): # generator of terms
        yield from (1, 5, 6, 9, 11, 16, 21, 25, 31, 36, 41, 49, 51, 56, 57, 61, 71, 75, 76, 81, 91, 93, 96, 99)
        for i in count(100,100):
            for j in (1, 25, 49, 51, 57, 75, 76, 93, 99):
                m = i+j
                if pow(m,m,10**(len(str(m)))) == m:
                    yield m
    A082576_list = list(islice(A082576_gen(),50)) # Chai Wah Wu, Jun 02 2024

Formula

{ k : k^k mod 10^(1+floor(log_10(k))) = k }. - Jon E. Schoenfield, Jun 02 2024

Extensions

More terms from David Wasserman, Oct 27 2006