cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082590 Expansion of 1/((1 - 2*x)*sqrt(1 - 4*x)).

Original entry on oeis.org

1, 4, 14, 48, 166, 584, 2092, 7616, 28102, 104824, 394404, 1494240, 5692636, 21785872, 83688344, 322494208, 1246068806, 4825743832, 18726622964, 72798509728, 283443548276, 1105144970992, 4314388905704, 16862208539008, 65972020761116, 258354647959984, 1012627828868072
Offset: 0

Views

Author

Vladeta Jovovic, May 13 2003

Keywords

Comments

Row sums of A068555 and A112336. - Paul Barry, Sep 04 2005
Hankel transform is 2^n*(-1)^C(n+1,2) (A120617). - Paul Barry, Apr 26 2009
Number of n-lettered words in the alphabet {1, 2, 3, 4} with as many occurrences of the substring (consecutive subword) [1, 2] as of [1, 3]. - N. J. A. Sloane, Apr 08 2012

Crossrefs

Bisection of A226302.

Programs

  • Maple
    A082590 := proc(n)
        coeftayl( 1/(1-2*x)/sqrt(1-4*x),x=0,n) ;
    end proc: # R. J. Mathar, Nov 06 2013
    A082590 := n -> 2^n*JacobiP(n, 1/2, -1 - n, 3):
    seq(simplify(A082590(n)), n = 0..26);  # Peter Luschny, Jan 22 2025
  • Mathematica
    CoefficientList[ Series[ 1/((1 - 2*x)*Sqrt[1 - 4*x]), {x, 0, 25}], x] (* Jean-François Alcover, Mar 26 2013 *)
    Table[2^(n) JacobiP[n, 1/2, -1-n, 3], {n, 0, 30}] (* Vincenzo Librandi, May 26 2013 *)

Formula

a(n) = 2^n*JacobiP(n, 1/2, -1-n, 3).
A034430(n) = (n!/2^n)*a(n). A076729(n) = n!*a(n).
a(n) = Sum_{k=0..n+1} binomial(2*n+2, k) * sin((n - k + 1)*Pi/2). - Paul Barry, Nov 02 2004
From Paul Barry, Sep 04 2005: (Start)
a(n) = Sum_{k=0..n} 2^(n-k)*binomial(2*k, k).
a(n) = Sum_{k=0..n} (2*k)! * (2*(n-k))!/(n!*k!*(n-k)!). (End)
a(n) = Sum_{k=0..n} C(2*n, n)*C(n, k)/C(2*n, 2*k). - Paul Barry, Mar 18 2007
G.f.: 1/(1 - 4*x + 2*x^2/(1 + x^2/(1 - 4*x + x^2/(1 + x^2/(1 - 4*x + x^2/(1 + ... (continued fraction). - Paul Barry, Apr 26 2009
D-finite with recurrence: n*a(n) + 2*(-3*n+1)*a(n-1) + 4*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Dec 03 2012
a(n) ~ 2^(2*n + 1)/sqrt(Pi*n). - Vaclav Kotesovec, Aug 15 2013
a(n) = 2^(n + 1)*Pochhammer(1/2, n+1)*hyper2F1([1/2,-n], [3/2], -1)/n!. - Peter Luschny, Aug 02 2014
a(n) - 2*a(n-1) = A000984(n). - R. J. Mathar, Apr 24 2024
a(n) = 2^n*JacobiP(n, 1/2, -1 - n, 3). - Peter Luschny, Jan 22 2025