A082594 Constant term when a polynomial of degree n-1 is fitted to the first n primes.
2, 1, 2, 3, 6, 15, 38, 91, 206, 443, 900, 1701, 2914, 4303, 4748, 1081, -14000, -55335, -150394, -346163, -716966, -1369429, -2432788, -4002993, -5964748, -7525017, -6123026, 4900093, 40900520, 134308945, 348584680, 798958751, 1678213244, 3277458981, 5972923998, 10110994307
Offset: 1
Keywords
Examples
For n=4, we fit a cubic through the 4 points (1,2),(2,3),(3,5),(4,7) to obtain a(4) = 3.
References
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 80
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Author?, Sicurvqf
- T. D. Noe, Plot of A082594
- Zhi-Wei Sun, Combinatorial identities in dual sequences, European J. Combin. 24:6 (2003), pp. 709-718.
Programs
-
Mathematica
Table[Coefficient[Expand[InterpolatingPolynomial[Prime[Range[n]], x]], x, 0], {n, 50}] Diff[lst_List] := Table[lst[[i+1]]-lst[[i]], {i, Length[lst]-1}]; n=50; dt=Table[{}, {n}]; dt[[1]]=Prime[Range[n]]; Do[dt[[i]]=Diff[dt[[i-1]]], {i, 2, n}]; Table[s=dt[[i, 1]]; Do[s=dt[[i-j, 1]]-s, {j, i-1}]; s, {i, n}]
-
PARI
dual(v:vec)=vector(#v,i,-sum(j=0,i-1,binomial(i-1,j)*(-1)^j*v[j+1])) dual(concat(0,primes(100)))[2..101] \\ Charles R Greathouse IV, Oct 03 2013
-
PARI
{a(n) = sum(k=0, n-1, sum(i=0, k, binomial(k, i) * (-1)^i * prime(i+1)))}; /* Michael Somos, Dec 02 2020 */
Formula
a(n) = sum{k=1, .., n} (-1)^(k+1) A007442(k)
Extensions
Edited by T. D. Noe, May 08 2003
Comments