cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A082986 Largest x such that 1/x + 1/y + 1/z = 1/n.

Original entry on oeis.org

6, 42, 156, 420, 930, 1806, 3192, 5256, 8190, 12210, 17556, 24492, 33306, 44310, 57840, 74256, 93942, 117306, 144780, 176820, 213906, 256542, 305256, 360600, 423150, 493506, 572292, 660156, 757770, 865830, 985056, 1116192, 1260006, 1417290, 1588860, 1775556
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), May 29 2003

Keywords

Comments

The greedy algorithm gives the decomposition 1/n = 1/(n+1) + 1/(n^2+n+1) + 1/(n^4+2n^3+2n^2+n). - Charles R Greathouse IV, Oct 17 2012

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{f, d, t, x = 0}, For[z = n+1, z <= Quotient[201*n, 100], z++, f = 1/n - 1/z; d = Denominator[f]; Do[t = (y/d + 1/y)/f; If[Denominator[t] == 1, x = Max[x, t*y]], {y, Divisors[d]}]]; x]; Table[a[n], {n, 1, 36}] (* Jean-François Alcover, Jul 10 2017, after Charles R Greathouse IV *)
  • PARI
    a(n)=my(f, d, t, x); for(z=n+1, 201*n\100, f=1/n-1/z; d=denominator(f); fordiv(d, y, t=(y/d+1/y)/f; if(denominator(t)==1, x=max(x, t*y)))); x \\ Charles R Greathouse IV, Oct 17 2012

Formula

a(n) >= n^4 + 2n^3 + 2n^2 + n (cf. A169938). - Charles R Greathouse IV, Oct 17 2012. [Note this is at present only a lower bound! - N. J. A. Sloane, Jan 27 2014]
a(n) >= 6*A006325(n-1). - Robert G. Wilson v, May 04 2013 [Corrected by Michael Somos, Jan 27 2014]
a(n) < 3*n^4 for n>=2 (upper bound). - Carmine Suriano, Feb 20 2014

Extensions

a(6)-a(36) from Charles R Greathouse IV, Oct 17 2012
Deleted incorrect (or at least unproved) Mma program. - N. J. A. Sloane, Jan 27 2014
Showing 1-1 of 1 results.