cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082605 Using Euler's 6-term sequence A014556, we define the partial recurrence relation a(0)=2, a(1)=3, a(2)=5; a(k) = 2*a(k-1) - 1 - (-2)^(k-2), 3 <= k <= 5.

Original entry on oeis.org

2, 3, 5, 11, 17, 41, 65, 161, 257, 641, 1025, 2561, 4097, 10241, 16385, 40961, 65537, 163841, 262145, 655361, 1048577, 2621441, 4194305, 10485761, 16777217, 41943041, 67108865, 167772161, 268435457, 671088641, 1073741825, 2684354561
Offset: 0

Views

Author

Johan Meyer and Ben de la Rosa (meyerjh.sci(AT)mail.uovs.ac.za), May 23 2003

Keywords

Comments

Using this definition of a(k) we (formally) work backwards towards a(2)=5 to arrive at the formula for a(k) below.
For k >= 3, a(k) has the simple form a(k) = 2^(k-2)*(4 + (1 + (-1)^(k+1))/2) + 1; and it follows by induction that a(k) is congruent to 17 (mod 24) for all k >= 4. Direct calculations show that for k >= 3, the discriminants of the polynomials x^2 + x + a(k), D(k) = 1 - 4*a(k), satisfy the functional equation -D(k) = a(k+2) + 2.

Crossrefs

a(0..6) and a(2*n) same as A085613(n+1).

Programs

  • Magma
    A082605:= func< n | n le 1 select n+2 else 2^(n-3)*(9-(-1)^n) +1 >;
    [A082605(n): n in [0..40]]; // G. C. Greubel, Mar 23 2024
    
  • Maple
    aList := proc(len) local egf, ser, n;
    egf := (exp(-2*x) + 9*exp(2*x) - 10)/4; ser := series(egf, x, len + 2);
    [2, 3, 5, seq(1 + n!*coeff(ser,x, n), n = 2..len)] end:
    aList(30);  # Peter Luschny, Mar 23 2024
  • Mathematica
    LinearRecurrence[{1,4,-4}, {2,3,5,11,17}, 32] (* Georg Fischer, May 15 2019 *)
  • PARI
    a(n)=if(n<2,if(n<1,2,3),if(n%2==0,4^(n/2)+1,5/2*4^((n-1)/2)+1))
    
  • SageMath
    def A082605(n): return 1 + 2^(n-3)*(9-(-1)^n) -int(n==1)/2
    [A082605(n) for n in range(41)] # G. C. Greubel, Mar 23 2024

Formula

(a(k))(k>=0) = 2^(k-2)*(4 + Sum{r=2..k-1} (-1)^r) + 1, the empty sums corresponding to k=0, 1, 2 of course taken to be zero.
a(n) = A056486(n-1) + 1. - Ralf Stephan, Mar 19 2004
From Georg Fischer, May 15 2019: (Start)
a(2*n) = 2^n + 1.
G.f.: (2+x-6*x^2+2*x^3-2*x^4)/((1-x)*(1-2*x)*(1+2*x)). (End)

Extensions

More terms from Ralf Stephan, Mar 19 2004