cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A082606 n-th powers arising in A082605.

Original entry on oeis.org

3, 9, 125, 810000, 12181395632886429300000
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 28 2003

Keywords

Comments

The sequence is infinite.

Crossrefs

Formula

a(n) = A083205(n)*A083205(n+1)+1. - David Wasserman, Sep 21 2004

Extensions

More terms from David Wasserman, Sep 21 2004

A107448 Irregular triangle T(n, k) = b(n) + k^2 + k + 1, where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1, read by rows.

Original entry on oeis.org

5, 7, 11, 17, 13, 17, 23, 31, 41, 53, 67, 83, 101, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971, 1033
Offset: 1

Views

Author

Roger L. Bagula, May 26 2005

Keywords

Comments

Former title: Triangular form sequence made from a version of A082605 Euler extension.

Examples

			The irregular triangle begins as:
   5;
   7, 11, 17;
  13, 17, 23, 31, 41, 53, 67, 83, 101;
  19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257;
		

References

  • Advanced Number Theory, Harvey Cohn, Dover Books, 1963, Page 155

Crossrefs

Programs

  • Magma
    b:= func< n | n eq 1 select 2 else 2^(n-3)*(9-(-1)^n) >;
    A107448:= func< n,k | b(n) +k^2 +k +1 >;
    [A107448(n,k): k in [1..b(n)-1], n in [1..8]]; // G. C. Greubel, Mar 23 2024
    
  • Mathematica
    (* First program *)
    a[1] = 3; a[2] = 5; a[3] = 11; a[n_]:= a[n]= Abs[1-4*a[n-2]] -2;
    euler= Table[a[n], {n,10}];
    Table[k^2 + k + euler[[n]], {n,7}, {k,euler[[i]] -2}]//Flatten
    (* Second program *)
    b[n_]:= 2^(n-3)*(9-(-1)^n) - Boole[n==1]/2;
    T[n_, k_]:= b[n] +k^2+k+1;
    Table[T[n,k], {n,8}, {k,b[n]-1}]//Flatten (* G. C. Greubel, Mar 23 2024 *)
  • SageMath
    def b(n): return 2^(n-3)*(9-(-1)^n) - int(n==1)/2
    def A107448(n,k): return b(n) + k^2+k+1;
    flatten([[A107448(n,k) for k in range(1,b(n))] for n in range(1,8)]) # G. C. Greubel, Mar 23 2024

Formula

T(n, k) = b(n) + k^2 + k + 1, where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1. - G. C. Greubel, Mar 23 2024

Extensions

Edited by G. C. Greubel, Mar 23 2024

A107449 Irregular triangle T(n, k) = 10 - ( (b(n) + k^2 + k + 1) mod 10 ), where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1, read by rows.

Original entry on oeis.org

5, 3, 9, 3, 7, 3, 7, 9, 9, 7, 3, 7, 9, 1, 7, 1, 3, 3, 1, 7, 1, 3, 3, 1, 7, 1, 3, 3, 7, 3, 7, 9, 9, 7, 3, 7, 9, 9, 7, 3, 7, 9, 9, 7, 3, 7, 9, 9, 7, 3, 7, 9, 9, 7, 3, 7, 9, 9, 7, 3, 7, 9, 9, 7, 3, 7, 9, 3, 9, 3, 5, 5, 3, 9, 3, 5, 5, 3, 9, 3, 5, 5, 3, 9, 3, 5, 5, 3, 9, 3, 5, 5, 3, 9, 3, 5, 5, 3, 9, 3, 5, 5, 3, 9, 3
Offset: 1

Views

Author

Roger L. Bagula, May 26 2005

Keywords

Examples

			The irregular triangle begins as:
  5;
  3, 9, 3;
  7, 3, 7, 9, 9, 7, 3, 7, 9;
  1, 7, 1, 3, 3, 1, 7, 1, 3, 3, 1, 7, 1, 3, 3;
		

Crossrefs

Programs

  • Magma
    b:= func< n | n eq 1 select 2 else 2^(n-3)*(9-(-1)^n) >;
    A107448:= func< n, k | 10 - ((b(n) +k^2 +k +1) mod 10) >;
    [5,3,9,3] cat [A107448(n, k): k in [1..b(n)-1], n in [3..8]]; // G. C. Greubel, Mar 24 2024
    
  • Mathematica
    b[n_]:= 2^(n-3)*(9-(-1)^n) -Boole[n==1]/2;
    T[n_, k_]:= 10  -Mod[k^2+k+1+b[n], 10];
    Table[T[n, k], {n,8}, {k,b[n]-1}]//Flatten (* G. C. Greubel, Mar 24 2024 *)
  • SageMath
    def b(n): return 2^(n-3)*(9-(-1)^n) - int(n==1)/2
    def A107449(n, k): return 10 - ((b(n) + k^2+k+1)%10);
    flatten([[A107449(n, k) for k in range(1, b(n))] for n in range(1, 8)]) # G. C. Greubel, Mar 24 2024

Formula

T(n, k) = 10 - (b(n) + k^2 + k + 1) mod 10, where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1. - G. C. Greubel, Mar 24 2024

Extensions

Edited by G. C. Greubel, Mar 24 2024

A085613 a(n) = 2^(n-1) + (2 + (-1)^n)^((n-2)/2).

Original entry on oeis.org

2, 3, 5, 11, 17, 41, 65, 155, 257, 593, 1025, 2291, 4097, 8921, 16385, 34955, 65537, 137633, 262145, 543971, 1048577, 2156201, 4194305, 8565755, 16777217, 34085873, 67108865, 135812051, 268435457, 541653881, 1073741825, 2161832555, 4294967297, 8632981313
Offset: 1

Views

Author

Ben de la Rosa & Johan Meyer (MeyerJH.sci(AT)mail.uovs.ac.za), Jul 09 2003

Keywords

Comments

Extends Euler's 6-term sequence.
In Euler's 6-term sequence we have noticed that e(1) = 2 = 2^0 + 1; e(2) = 3 = 2^1 + 3^0; e(3) = 5 = 2^2 + 1; e(4) = 11 = 2^3 + 3^1; e(5) = 17 = 2^4 + 1; e(6) = 41 = 2^5 + 3^2, which of course immediately leads to our formula above. Note: For m>0, we take m^(1/2) to be the unique positive square root of m.
a(2^n + 1), n=0,1,2,... are the Fermat numbers.

Crossrefs

Cf. A082605.

Programs

Extensions

More terms from Neven Juric, Apr 10 2008

A117012 Primes of the form n^2+5*n+c (n>=0), where c=3 for even n and c=-3 for odd n.

Original entry on oeis.org

3, 17, 47, 107, 173, 269, 503, 641, 809, 983, 1187, 1637, 2441, 2753, 4157, 4547, 4967, 5393, 5849, 6311, 6803, 7829, 8363, 9497, 11981, 12653, 13331, 14753, 15497, 17027, 22943, 26723, 29753, 31859, 32933, 38609, 39791, 42221, 47297, 49943, 58313
Offset: 1

Views

Author

Roger L. Bagula, Apr 16 2006

Keywords

References

  • Harvey Cohn, Advanced Number Theory,Dover, New York, 1962, page 155.

Crossrefs

Programs

  • Maple
    select(isprime, [seq(n^2 + 5*n + (-1)^n * 3, n=1..1000)]); # Robert Israel, Aug 25 2025
  • Mathematica
    f[n_] := If[Mod[n, 2] == 1, n^2 + 5*n - 3, n^2 + 5*n + 3] b = Flatten[Table[If[PrimeQ[f[n]] == True, f[n], {}], {n, 1, 100}]]
  • PARI
    for(n=1, 250, k=n^2+5*n+3-6*(n%2); if(isprime(k), print1(k,", ")))

Extensions

Edited and extended by N. J. A. Sloane, Apr 17 2006
Showing 1-5 of 5 results.