cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A082607 a(0)=1; for n > 0, a(n) = least k not included earlier such that k*a(n-1) - 1 is a square.

Original entry on oeis.org

1, 2, 5, 10, 17, 26, 37, 50, 65, 34, 13, 25, 41, 61, 85, 113, 145, 122, 101, 82, 293, 634, 1105, 53, 109, 185, 74, 149, 250, 377, 205, 146, 97, 58, 29, 73, 137, 221, 181, 650, 541, 442, 353, 274, 953, 2042, 3541, 5450, 409, 173, 370, 289, 218, 157, 106, 337, 698
Offset: 0

Views

Author

Amarnath Murthy, Apr 28 2003

Keywords

Comments

Conjecture: this is a permutation of A008784. - Robert Israel, Aug 25 2025

Crossrefs

Contained in A008784. Cf. A082608, A082609, A082610, A082611, A082612.

Programs

  • Maple
    N:= 10000: # for terms before the first term > N
    Cands:= select(t -> numtheory:-quadres(-1,t) = 1, [$2..N]): nc:= nops(Cands):
    R:= 1: r:= 1:
    do
      found:= false;
      for i from 1 to nc do
        if issqr(r*Cands[i]-1) then
           found:= true;
           r:= Cands[i];
           R:= R,r;
           Cands:= subsop(i=NULL,Cands);
           nc:= nc-1;
           break
        fi
      od;
      if not found then break fi
    od:
    R; # Robert Israel, Aug 25 2025
  • Mathematica
    l = {1}; Do[k = 1; While[MemberQ[l, k] || !IntegerQ[Sqrt[k*Last[l]-1]], k++ ]; AppendTo[l, k], {n, 50}]; l (* Ryan Propper, Jun 13 2006 *)
  • PARI
    a=[1];print1(1",");for(n=2,100,k=1;f=1;while(f,if(issquare(k*a[n-1]-1),f=0;for(i=1,n-1,if(a[i]==k,f=1)));k++);a=concat(a,k-1);print1(k-1",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007

Extensions

Corrected and extended by Ryan Propper, Jun 13 2006
Definition corrected by R. J. Mathar, Nov 12 2006
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007

A082608 Squares pertaining to A082607. a(n) = A082607(n)*A082607(n+1)- 1.

Original entry on oeis.org

1, 9, 49, 169, 441, 961, 1849, 3249, 2209, 441, 324, 1024, 2500, 5184, 9604, 16384, 17689, 12321, 8281, 24025, 185761, 700569, 58564, 5776, 20164, 13689, 11025, 37249, 94249, 77284, 29929, 14161, 5625, 1681, 2116, 10000, 30276, 40000, 117649
Offset: 0

Views

Author

Amarnath Murthy, Apr 28 2003

Keywords

Crossrefs

Extensions

Corrected and extended by R. J. Mathar, Nov 12 2006

A082610 Cubes pertaining to A082609. a(n) = A082609(n)*A082609(n+1)- 1.

Original entry on oeis.org

1, 27, 125, 512, 125000, 6708494456, 1978547007464, 9612511054106624, 59566081927816931517224, 911126473116338231047175614119973952, 57596301070572648147987649881578568811888391304423063406302778568
Offset: 0

Views

Author

Amarnath Murthy, Apr 28 2003

Keywords

Crossrefs

Extensions

Corrected and extended by David Wasserman, Oct 19 2004

A098717 Primes p such that 2*p+1 and ((2*p+1)^2 + 1)/2 = p^2 + (p+1)^2 are primes.

Original entry on oeis.org

2, 5, 29, 719, 1229, 1409, 1559, 2039, 2399, 2699, 2939, 3449, 3779, 6269, 6899, 7079, 8069, 9689, 12959, 13619, 14009, 14249, 14879, 19559, 20369, 20759, 21089, 22079, 22469, 23459, 26879, 28559, 30269, 31799, 32009, 32789, 33179, 33569, 38639, 39989, 40949, 41399, 41969, 42359, 45569, 46349, 47279, 49499, 49919, 53309, 54959, 55469
Offset: 1

Views

Author

Robin Garcia, Sep 29 2004

Keywords

Comments

It is easy to prove that all the terms except the first two must satisfy a(n) mod 10 = 9.

Examples

			a(3) = 29 = p and 2*p + 1 = 59 and (59^2 + 1)/2 = 29^2 + 30^2 = 1741 are prime.
		

Crossrefs

Cf. A082612.

Programs

  • Mathematica
    Flatten[Append[{2, 5}, Select[Sort[Range[29, 30000000, 30], Range[49, 30000000, 30]], PrimeQ[ # ]&&PrimeQ[2 # + 1] && PrimeQ[1 + 2 # + 2 #^2] &]]] (Zak Seidov)
    f1[n_]:=(n+1)^2-n^2;f2[n_]:=(n+1)^2+n^2; Select[Prime[Range[8! ]],PrimeQ[f1[ # ]]&&PrimeQ[f2[ # ]]&] (* Vladimir Joseph Stephan Orlovsky, Feb 25 2010 *)

Extensions

More terms from Zak Seidov, Feb 16 2005
Showing 1-4 of 4 results.