cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A082620 a(1) = 1, then the smallest palindromic prime obtained by inserting digits anywhere in a(n-1).

Original entry on oeis.org

1, 11, 101, 10301, 1003001, 100030001, 10003630001, 1000136310001, 100010363010001, 10001036363010001, 1000103639363010001, 100010356393653010001, 10001033563936533010001, 1000103305639365033010001, 100010313056393650313010001, 10001031305636963650313010001
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 29 2003

Keywords

Crossrefs

Extensions

Corrected by R. J. Mathar, Oct 01 2006
a(7)-a(10) from Felix Fröhlich, Oct 16 2014
a(11)-a(12) from Felix Fröhlich, Nov 26 2014
a(13)-a(16) from Felix Fröhlich, Apr 02 2015
Terms a(8)-a(16) corrected by Giovanni Resta, Sep 20 2019

A082621 a(1) = 2, then the smallest palindromic prime obtained by inserting digits anywhere in a(n-1) (including at the ends).

Original entry on oeis.org

2, 727, 37273, 3072703, 307323703, 30073237003, 3006732376003, 300067323760003, 30000673237600003, 3000067382837600003, 300006738242837600003, 30000673820402837600003, 3000063738204028373600003, 300006373821040128373600003, 30000635738210401283753600003
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 29 2003

Keywords

Crossrefs

Extensions

Corrected by R. J. Mathar, Oct 01 2006
More terms from Giovanni Resta, Sep 20 2019

A082623 a(1) = 5, a(n) = smallest palindromic prime obtained by inserting two digits anywhere in a(n-1).

Original entry on oeis.org

5, 151, 10501, 1035301, 103515301, 10325152301, 1013251523101, 101325181523101, 10132512821523101, 1013251428241523101, 101322514282415223101, 10132245142824154223101, 1013224514281824154223101, 101322451402818204154223101, 10132245014028182041054223101
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 29 2003

Keywords

Comments

a(78) is the last term, as none of the candidates for a(79) is prime. - Giovanni Resta, Sep 20 2019

Crossrefs

Programs

  • Maple
    cp:= proc(x,y) if x[1] < y[1] then true
               elif x[1] > y[1] then false
               elif nops(x)=1 then true
               else procname(x[2..-1],y[2..-1])
               fi
    end proc: A[1]:= 5: L:= [5]:
    for n from 2 to 15 do
      nL:= nops(L);
      Lp:= sort([seq(seq([op(L[1..i]), x, op(L[i+1..-1])], x=`if`(i=0, 1..9, 0..9)), i=0..nL)], cp);
      cands:= map(t -> add(t[i]*(10^(i-1)+10^(2*nL+1-i)), i=1..nL)+t[nL+1]*10^(nL), Lp);
      found:= false;
      for i from 1 to nops(cands) do
        if isprime(cands[i]) then
          A[n]:= cands[i];
          L:= Lp[i];
          found:= true;
          break
        fi
      od;
      if not found then break fi
    od:
    seq(A[i],i=1..15); # Robert Israel, Jan 03 2017, corrected Sep 20 2019

Extensions

Terms after a(4) corrected by Giovanni Resta, Sep 20 2019
Showing 1-3 of 3 results.