cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082633 Decimal expansion of the 1st Stieltjes constant gamma_1 (negated).

Original entry on oeis.org

0, 7, 2, 8, 1, 5, 8, 4, 5, 4, 8, 3, 6, 7, 6, 7, 2, 4, 8, 6, 0, 5, 8, 6, 3, 7, 5, 8, 7, 4, 9, 0, 1, 3, 1, 9, 1, 3, 7, 7, 3, 6, 3, 3, 8, 3, 3, 4, 3, 3, 7, 9, 5, 2, 5, 9, 9, 0, 0, 6, 5, 5, 9, 7, 4, 1, 4, 0, 1, 4, 3, 3, 5, 7, 1, 5, 1, 1, 4, 8, 4, 8, 7, 8, 0, 8, 6, 9, 2, 8, 2, 4, 4, 8, 4, 4, 0, 1, 4, 6, 0, 4
Offset: 0

Views

Author

Benoit Cloitre, May 24 2003

Keywords

Comments

The Stieltjes constants are named after the Dutch mathematician Thomas Joannes Stieltjes (1856-1894). - Amiram Eldar, Jun 16 2021

Examples

			-0.0728158454836767248605863758749...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 166.

Crossrefs

Programs

  • Maple
    evalf(gamma(1)) ; # R. J. Mathar, Sep 15 2013
  • Mathematica
    Prepend[RealDigits[c=N[StieltjesGamma[1], 120], 10][[1]], 0]
    N[EulerGamma^2 - Residue[Zeta[s]^3, {s, 1}]/3, 100] (* Vaclav Kotesovec, Jan 07 2017 *)
  • PARI
    intnum(x=0,oo,(1/tanh(Pi*x)-1)*(x*log(1+x^2)-2*atan(x))/(2*(1+x^2))) \\ Charles R Greathouse IV, Mar 10 2016
    
  • PARI
    Stieltjes(n)=my(a=log(2)); a^n/(n+1)*sumalt(k=1,(-1)^k/k*subst(bernpol(n+1),'x,log(k)/a))
    Stieltjes(1) \\ Charles R Greathouse IV, Feb 23 2022

Formula

Equals lim_{y->infinity} y*(Im(zeta(1+i/y))+y).
Equals lim_{n->infinity} (((log(n))^2)/2 - Sum_{k=2..n} (log(k))/k). - Warut Roonguthai, Aug 04 2005
Equals Integral_{0..infinity} (coth(Pi*x)-1)*(x*log(1+x^2)-2*arctan(x))/(2*(1+x^2)) dx. - Jean-François Alcover, Jan 28 2015
Using the abbreviations a = log(z^2 + 1/4)/2, b = arctan(2*z) and c = cosh(Pi*z) then gamma_1 = -(Pi/2)*Integral_{0..infinity} (a^2 - b^2)/c^2. The general case is for n >= 0 (which includes Euler's gamma as gamma_0) gamma_n = -(Pi/(n+1))* Integral_{0..infinity} sigma(n+1)/c^2, where sigma(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n,2*k)*b^(2*k)*a^(n-2*k). - Peter Luschny, Apr 19 2018
Equals log(2)^2/6 - log(2)*gamma/2 + (1/(2*log(2))) * Sum_{k>=1} (-1)^k * log(k)^2/k, where gamma is Euler's constant (A001620) (Hardy, 1912). - Amiram Eldar, Jun 09 2023
Equals Sum_{j>=1} Zeta'(2*j + 1) / (2*j + 1). - Peter Luschny, Jun 16 2023

Extensions

More terms from Eric W. Weisstein, Jul 14 2003