A082647 Number of ways n can be expressed as the sum of d consecutive positive integers where d>0 is a divisor of n.
1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 3, 1, 1, 2, 1, 3, 2, 1, 1, 2, 2, 1, 3, 1, 1, 4, 1, 1, 2, 2, 2, 2, 1, 1, 3, 2, 2, 2, 1, 1, 3, 1, 1, 4, 1, 2, 3, 1, 1, 2, 3, 1, 3, 1, 1, 3, 1, 3, 2, 1, 2, 3, 1, 1, 3, 2, 1, 2, 2, 1, 4, 3, 1, 2, 1, 2, 2, 1, 2, 4, 2, 1, 2, 1, 2, 4
Offset: 1
Examples
For n=6: 6 has two ways -- (d=3; 3|6), 1+2+3=6; and (d=1; 1|6), 6=6 -- so a(6)=2.
Links
- Peter Kagey, Table of n, a(n) for n = 1..10000
- M. D. Hirschhorn and P. M. Hirschhorn, Partitions into Consecutive Parts, Mathematics Magazine: 2003, Volume 76, Number 4, pp. 306-308.
- William Lowell Putnam Competition, Function A(k) in Problem B6, 2015.
Programs
-
Maple
N:= 1000: # to get a(1) to a(N) g:= add(x^(k*(2*k-1))/(1-x^(2*k-1)), k=1..floor(sqrt(N/2))): S:= series(g,x,N+1): seq(coeff(S,x,n),n=1..N); # Robert Israel, Dec 08 2015
-
PARI
a(n) = my(q = sqrt(2*n)); sumdiv(n, d, (d%2) && (d < q)); \\ Michel Marcus, Jul 04 2014
Formula
G.f.: Sum_{k>0} x^(k*(2*k-1))/(1-x^(2*k-1)). - Vladeta Jovovic, Aug 25 2004
Comments