A082649 Triangle of coefficients in expansion of sinh^2(n*x) in powers of sinh(x).
1, 4, 4, 16, 24, 9, 64, 128, 80, 16, 256, 640, 560, 200, 25, 1024, 3072, 3456, 1792, 420, 36, 4096, 14336, 19712, 13440, 4704, 784, 49, 16384, 65536, 106496, 90112, 42240, 10752, 1344, 64, 65536, 294912, 552960, 559104, 329472, 114048, 22176, 2160, 81, 262144, 1310720, 2785280, 3276800, 2329600
Offset: 1
Examples
sinh^2 x = sinh^2 x sinh^2 2x = 4 sinh^4 x + 4 sinh^2 x sinh^2 3x = 16 sinh^6 x + 24 sinh^4 x + 9 sinh^2 x sinh^2 4x = 64 sinh^8 x + 128 sinh^6 x + 80 sinh^4 x + 16 sinh^2 x sinh^2 5x = 256 sinh^10 x + 640 sinh^8 x + 560 sinh^6 x + 200 sinh^4 x + 25 sinh^2 x From _Peter Bala_, Feb 02 2016: (Start) sin^2(x) = 1 - cos^2(x); sin^2(2*x) = -4*cos^4(x) + 4*cos^2(x); sin^2(3*x) = 1 - (16*cos^6(x) - 24*cos^4(x) + 9*cos^2(x)); sin^2(4*x) = -64*cos^8(x) + 128*cos^6(x) - 80*cos^4(x) + 16*cos^2(x); sin^2(5*x) = 1 - (256*cos^10(x) - 640*cos^8(x) + 560*cos^6(x) - 200*cos^4(x) + 25*cos^2(x)). (End)
Links
- Robert Israel, Table of n, a(n) for n = 1..10011 (rows 0 to 140, flattened)
Programs
-
Maple
g:= (1+x*y)/((1-x*y)*(1-(4+2*y)*x+x^2*y^2)): S:= series(g,x,15): seq(seq(coeff(coeff(S,x,n),y,k),k=0..n),n=0..14); # Robert Israel, Dec 20 2017
-
Mathematica
Table[Reverse[CoefficientList[1/x TrigExpand[Sinh[n ArcSinh[Sqrt[x]]]^2], x]], {n, 7}] // Flatten (* Eric W. Weisstein, Apr 05 2017 *) Abs[Table[CoefficientList[x^n Piecewise[{{1 - ChebyshevT[n, 1/Sqrt[x]]^2, Mod[n, 2] == 0}, {ChebyshevT[n, 1/Sqrt[x]]^2, Mod[n, 2] == 1}}], x], {n, 10}]] // Flatten (* Eric W. Weisstein, Apr 05 2017 *)
Formula
Coefficients are: 4^(n-1), (2n)4^(n-2), (2n)(2n-3)4^(n-3)/2!, (2n)(2n-4)(2n-5)4^(n-4)/3!, (2n)(2n-5)(2n-6)(2n-7)4^(n-5)/4!, (2n)(2n-6)(2n-7)(2n-8)(2n-9)4^(n-6)/5!...
G.f. as triangle: (1+x*y)/((1-x*y)*(1-(4+2*y)*x+x^2*y^2)). - Robert Israel, Dec 20 2017
Extensions
More terms from Robert Israel, Dec 20 2017
Comments