cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082691 a(1)=1, a(2)=2, then if the first 3*2^k-1 terms are a(1), a(2), ..., a(3*2^k - 1), the first 3*2^(k+1)-1 terms are a(1), a(2), ..., a(3*2^k - 1), a(1), a(2), ..., a(3*2^k - 1), a(3*2^k-1) + 1.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 5, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 5, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 5, 6, 7, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Benoit Cloitre, Apr 12 2003

Keywords

Comments

Consider the subsequence b(k) such that a(b(k))=1. Then 3k - b(k) = A063787(k+1) and b(k) = 1 + A004134(k-1).
From Sam Alexander, Nov 27 2010: (Start)
A naive way to try and guess whether a sequence is periodic, based on its first k terms (n1, ..., nk), is to look at all sequences which have period less than k, and guess "periodic" if any of them extend (n1, ..., nk), "nonperiodic" otherwise.
a(1)=1, a(2)=2. Suppose a(1), ..., a(n) have been defined, n > 1.
1. If the above guessing method guesses that (a(1), ..., a(n)) is an initial segment of a periodic sequence, then let a(n+1) be the least nonzero number not appearing in (a(1), ..., a(n)).
2. Otherwise, let (a(n+1), ..., a(2n)) be a copy of (a(1), ..., a(n)).
This sequence thwarts the guessing attempt, tricking the guesser into changing his mind infinitely many times as n->infinity. (End)
As n increases, the average value of the first n terms approaches 7/3 = 2.333... - Maxim Skorohodov, Dec 15 2022

Examples

			To construct the sequence: start with (1, 2); concatenating those 2 terms gives (1,2,1,2). Appending 3 gives the first 5 terms: (1,2,1,2,3). Concatenating those 5 terms gives (1,2,1,2,3,1,2,1,2,3). Appending 4 gives the first 11 terms: (1,2,1,2,3,1,2,1,2,3,4), etc.
		

Crossrefs

Cf. A082692 (partial sums), A182659, A182660 (other sequences engineered to spite naive guessers).