A082691 a(1)=1, a(2)=2, then if the first 3*2^k-1 terms are a(1), a(2), ..., a(3*2^k - 1), the first 3*2^(k+1)-1 terms are a(1), a(2), ..., a(3*2^k - 1), a(1), a(2), ..., a(3*2^k - 1), a(3*2^k-1) + 1.
1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 5, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 5, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 5, 6, 7, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3
Offset: 1
Keywords
Examples
To construct the sequence: start with (1, 2); concatenating those 2 terms gives (1,2,1,2). Appending 3 gives the first 5 terms: (1,2,1,2,3). Concatenating those 5 terms gives (1,2,1,2,3,1,2,1,2,3). Appending 4 gives the first 11 terms: (1,2,1,2,3,1,2,1,2,3,4), etc.
Links
- Maxim Skorohodov, Table of n, a(n) for n = 1..10000
- Samuel Alexander, On Guessing Whether A Sequence Has A Certain Property, arxiv:1011.6626 [math.LO], 2010-2012; J. Int. Seq. 14 (2011) # 11.4.4
Comments