cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082732 a(1) = 1, a(2) = 3, a(n) = LCM of all the previous terms + 1.

Original entry on oeis.org

1, 3, 4, 13, 157, 24493, 599882557, 359859081592975693, 129498558604939936868397356895854557, 16769876680757063368089314196389622249367851612542961252860614401811693
Offset: 1

Views

Author

Amarnath Murthy, Apr 14 2003

Keywords

Comments

The LCM is in fact the product of all previous terms. From a(5) onwards the terms alternately end in 57 and 93.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[2] = 3; a[n_] := Apply[LCM, Table[a[i], {i, 1, n - 1}]] + 1; Table[ a[n], {n, 1, 10}]
    c=1.8806785436830780944921917650127503562630617563236301969047995953391479871\
    7695395204087358090874194124503892563356447954254847544689332763; Table[c^(2^n),{n,1,6}] or a = {}; k = 4; Do[AppendTo[a, k]; k = k^2 - k + 1, {n, 1, 10}]; a (* Artur Jasinski, Sep 22 2008 *)

Formula

For n>=3, a(n+1) = a(n)^2 - a(n) + 1.
For n>=3, a(n) = A004168(n-3) + 1. - Max Alekseyev, Aug 09 2019
1/3 = Sum_{n=3..oo} 1/a(n) = 1/4 + 1/13 + 1/157 + 1/24493 + ... or 1 = Sum_{n=3..oo} 3/a(n) = 3/4 + 3/13 + 3/157 + 3/24493 + .... If we take segment of length 1 and cut off in each step fragment of maximal length such that numerator of fraction is 3, denominators of such fractions will be successive numbers of this sequence. - Artur Jasinski, Sep 22 2008
a(n+2)=1.8806785436830780944921917650127503562630617563236301969047995953391\
4798717695395204087358090874194124503892563356447954254847544689332763...^(2^n). - Artur Jasinski, Sep 22 2008

Extensions

More terms from Robert G. Wilson v, Apr 15 2003