A082763 Roman numeral contains an asymmetric symbol (L).
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152
Offset: 1
Examples
40 = XL, 89 = LXXXIX, 140 = CXL.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..2000 (complete up to 3999)
- Gerard Schildberger, The first 3999 numbers in Roman numerals
- Eric Weisstein's World of Mathematics, Roman Numeral.
Programs
-
Haskell
a082763 n = a082763_list !! (n-1) a082763_list = filter (containsL . a061493) [1..3999] where containsL x = d == 4 || x > 0 && containsL x' where (x',d) = divMod x 10 -- Reinhard Zumkeller, Apr 14 2013
-
Maple
with(StringTools): for n from 1 to 152 do if(Search("L", convert(n, roman)) > 0)then printf("%d, ", n): fi: od: # Nathaniel Johnston, May 18 2011
-
Mathematica
Select[Range[200],StringCases[RomanNumeral[#],"L"]!={}&] (* Harvey P. Dale, Jun 10 2023 *)
-
PARI
/* "%" use below is actually identical to lift(Mod(n-1,50)) */ /* (n-1)
50 could be used for integer division below */ /* instead of floor, but the OEIS sometimes loses */ /* characters depending upon where on a submitted line they are. */ a(n)=floor((n-1)/50)*100+40+(n-1)%50 for(n=1,125,print1(a(n),","))
Formula
a(n+50) = a(n) + 100 for n >= 1 [a(n+L) = a(n) + C for n >= I], a(1) = 40 [a(I) = XL], a(n+1) = a(n) + 1 for 1 <= n <= 49 [a(n+I) = a(n) + I for I <= n <= XLIX]; so a(n) = floor((n-1)/50)*100 + 40 + ((n-1)(mod 50)) for n >= 1 [a(n) = floor((n-I)/L)*C + XL + ((n-I)(mod L)) for n >= I].
Comments