cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082763 Roman numeral contains an asymmetric symbol (L).

Original entry on oeis.org

40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152
Offset: 1

Views

Author

Rick L. Shepherd, May 21 2003

Keywords

Comments

I,V,X,C,D,M - and even the vinculum (bar) and apostrophus (backwards "C") - are each symmetric: horizontally, vertically, or both.
Numbers containing a 4 when decimally encoded with A061493. - Reinhard Zumkeller, Apr 14 2013

Examples

			40 = XL, 89 = LXXXIX, 140 = CXL.
		

Crossrefs

Cf. A006968 (Roman numerals main entry), A078715 (Palindromic Roman numerals).

Programs

  • Haskell
    a082763 n = a082763_list !! (n-1)
    a082763_list = filter (containsL . a061493) [1..3999] where
       containsL x = d == 4 || x > 0 && containsL x' where
                     (x',d) = divMod x 10
    -- Reinhard Zumkeller, Apr 14 2013
  • Maple
    with(StringTools): for n from 1 to 152 do if(Search("L", convert(n, roman)) > 0)then printf("%d, ", n): fi: od: # Nathaniel Johnston, May 18 2011
  • Mathematica
    Select[Range[200],StringCases[RomanNumeral[#],"L"]!={}&] (* Harvey P. Dale, Jun 10 2023 *)
  • PARI
    /* "%" use below is actually identical to lift(Mod(n-1,50)) */ /* (n-1)50 could be used for integer division below */ /* instead of floor, but the OEIS sometimes loses  */ /* characters depending upon where on a submitted line they are. */ a(n)=floor((n-1)/50)*100+40+(n-1)%50 for(n=1,125,print1(a(n),","))
    

Formula

a(n+50) = a(n) + 100 for n >= 1 [a(n+L) = a(n) + C for n >= I], a(1) = 40 [a(I) = XL], a(n+1) = a(n) + 1 for 1 <= n <= 49 [a(n+I) = a(n) + I for I <= n <= XLIX]; so a(n) = floor((n-1)/50)*100 + 40 + ((n-1)(mod 50)) for n >= 1 [a(n) = floor((n-I)/L)*C + XL + ((n-I)(mod L)) for n >= I].