cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A082867 Numbers n such that there exists a proper divisor 1 < m < n where m divides n and m+1 divides n+1, but there is no divisor d such that d divides n, d+1 divides n+1 and d+2 divides n+2.

Original entry on oeis.org

8, 15, 20, 24, 27, 32, 35, 39, 44, 48, 51, 56, 65, 68, 75, 80, 84, 87, 90, 92, 95, 99, 104, 111, 116, 119, 120, 125, 128, 132, 135, 140, 143, 144, 147, 152, 155, 159, 164, 168, 171, 175, 176, 185, 188, 189, 195, 200, 204, 207, 212, 216, 219, 224, 231, 236, 245
Offset: 1

Views

Author

Anne M. Donovan (anned3005(AT)aol.com), May 24 2003

Keywords

Examples

			8 is a member because 2 divides 8, 3 divides 9 (and 4 does not divide 10).
		

Crossrefs

Cf. A082772.

Programs

  • PARI
    is(n)=my(t); fordiv(n,m, if(m==1, next); if((n+1)%(m+1)==0, if(m==n, return(t)); t=1; if((n+2)%(m+2)==0, return(0)))) \\ Charles R Greathouse IV, Jul 05 2022

Extensions

Corrected by T. D. Noe, Oct 25 2006

A355490 Numbers of the form a+b+c = a^2 - b^2 - c^2 where a > b >= c > 0.

Original entry on oeis.org

8, 15, 20, 24, 27, 32, 35, 39, 44, 48, 49, 51, 54, 55, 56, 63, 64, 65, 68, 75, 80, 84, 87, 90, 92, 95, 98, 99, 104, 111, 114, 116, 119, 120, 123, 125, 128, 132, 135, 140, 143, 144, 147, 152, 153, 155, 159, 160, 164, 168, 170, 171, 174, 175, 176, 183, 184, 185, 188, 189, 195, 200, 203, 204, 207, 208, 209, 212, 215, 216, 219, 220, 224, 230, 231
Offset: 1

Views

Author

Mohammad Arab, Jul 04 2022

Keywords

Comments

It seems that A082867 is a subsequence.
The first counterexample to the above is A082867(60) = 258. - Charles R Greathouse IV, Jul 05 2022

Examples

			8 is a term: 8 = 4+2+2 = 4^2 - 2^2 - 2^2.
15 is a term: 15 = 7+5+3 = 7^2 - 5^2 - 3^2.
		

Crossrefs

Programs

  • Mathematica
    Solve[a==r^2-s^2-d^2 && 1<=r<=120 && 1<=s<=120 && 1<=d<=120 && 0<=a && r>s>=d && a==r+s+d, {a,r,s,d}, Integers]
  • PARI
    list(lim)=my(v=List([8]));lim\=1;for(a=3,lim-2,my(a2=a^2);for(b=(sqrt(2*a^2+2*a+1)-1)\2,a-2,my(t=a2-b^2-a-b,s);if(issquare(4*t+1,&s) && (c=(s-1)/2)<=b && c<=b && a+b+c<=lim, listput(v,a+b+c)))); Set(v) \\ Charles R Greathouse IV, Jul 05 2022

Extensions

a(57) = 184 inserted by Charles R Greathouse IV, Jul 05 2022
Showing 1-2 of 2 results.