cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Mohammad Arab

Mohammad Arab's wiki page.

Mohammad Arab has authored 2 sequences.

A355491 Numbers of the form a+b+c = a^3 - b^3 - c^3 where a > b >= c > 0.

Original entry on oeis.org

10, 35, 54, 64, 199, 235, 279, 747, 1224, 1610, 1774, 6156, 8254, 11035, 12024, 16875, 56439, 66340, 75635, 82279, 115712, 134045, 136765, 150480, 175616, 212266, 255277, 299789, 339759, 386704, 518410, 563814, 643824, 1025776, 1429190, 1431233, 1468846, 1598374
Offset: 1

Author

Mohammad Arab, Jul 04 2022

Keywords

Examples

			10 is a term: 10 = 4+3+3 = 4^3 - 3^3 - 3^3.
35 is a term: 35 = 14+13+8 = 14^3 - 13^3 - 8^3.
		

Crossrefs

Cf. A355490 (with squares instead of cubes).

Programs

  • Mathematica
    Solve[a==r^3-s^3-d^3 && 1<=r<=1000 && 1<=s<=1000 && 1<=d<=1000 && 0<=a && r>s>=d && a==r+s+d, {a,r,s,d}, Integers]

Extensions

More terms from Jinyuan Wang, Jul 05 2022

A355490 Numbers of the form a+b+c = a^2 - b^2 - c^2 where a > b >= c > 0.

Original entry on oeis.org

8, 15, 20, 24, 27, 32, 35, 39, 44, 48, 49, 51, 54, 55, 56, 63, 64, 65, 68, 75, 80, 84, 87, 90, 92, 95, 98, 99, 104, 111, 114, 116, 119, 120, 123, 125, 128, 132, 135, 140, 143, 144, 147, 152, 153, 155, 159, 160, 164, 168, 170, 171, 174, 175, 176, 183, 184, 185, 188, 189, 195, 200, 203, 204, 207, 208, 209, 212, 215, 216, 219, 220, 224, 230, 231
Offset: 1

Author

Mohammad Arab, Jul 04 2022

Keywords

Comments

It seems that A082867 is a subsequence.
The first counterexample to the above is A082867(60) = 258. - Charles R Greathouse IV, Jul 05 2022

Examples

			8 is a term: 8 = 4+2+2 = 4^2 - 2^2 - 2^2.
15 is a term: 15 = 7+5+3 = 7^2 - 5^2 - 3^2.
		

Crossrefs

Programs

  • Mathematica
    Solve[a==r^2-s^2-d^2 && 1<=r<=120 && 1<=s<=120 && 1<=d<=120 && 0<=a && r>s>=d && a==r+s+d, {a,r,s,d}, Integers]
  • PARI
    list(lim)=my(v=List([8]));lim\=1;for(a=3,lim-2,my(a2=a^2);for(b=(sqrt(2*a^2+2*a+1)-1)\2,a-2,my(t=a2-b^2-a-b,s);if(issquare(4*t+1,&s) && (c=(s-1)/2)<=b && c<=b && a+b+c<=lim, listput(v,a+b+c)))); Set(v) \\ Charles R Greathouse IV, Jul 05 2022

Extensions

a(57) = 184 inserted by Charles R Greathouse IV, Jul 05 2022