A082806 Palindromes which are prime and the sum of the digits is also prime.
2, 3, 5, 7, 11, 101, 131, 151, 191, 313, 353, 373, 757, 797, 919, 10301, 10501, 11311, 12721, 13331, 13931, 14341, 14741, 15551, 16361, 16561, 18181, 19391, 19991, 30103, 30703, 31513, 32323, 33533, 34543, 35153, 35353, 35753, 36563, 38183
Offset: 1
Examples
E.g. 12721 is a palindromic prime and 1+2+7+2+1 = 13 is also prime.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A002385.
Subsequence of A083393. [Arkadiusz Wesolowski, Sep 14 2011]
Programs
-
Maple
N:= 3: # to get all terms of at most 2*N+1 digits revdigs:= proc(n) local L,d; L:= convert(n,base,10); d:= nops(L); add(L[i]*10^(d-i),i=1..d); end proc: pals:= proc(d) local x,y; seq(seq(x*10^(d+1)+y*10^d + revdigs(x),y=0..9),x=10^(d-1)..10^d-1) end proc; select(n -> isprime(n) and isprime(convert(convert(n,base,10),`+`)), {2,3,5,7,11,seq(pals(d),d=1..3)}); # Robert Israel, Aug 12 2014
-
Mathematica
Select[ Range[390000], PrimeQ[ # ] && FromDigits[ Reverse[ IntegerDigits[ # ]]] == # && PrimeQ[ Plus @@ IntegerDigits[ # ]] & ] (* Robert G. Wilson v, Jun 17 2003 *)
-
Python
from sympy import isprime A082806 = sorted([n for n in chain(map(lambda x:int(str(x)+str(x)[::-1]),range(1,10**5)),map(lambda x:int(str(x)+str(x)[-2::-1]), range(1,10**5))) if isprime(n) and isprime(sum([int(d) for d in str(n)]))]) # Chai Wah Wu, Aug 12 2014
Extensions
Corrected and extended by Giovanni Resta, Feb 07 2006
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 14 2007
Comments