A083712 Duplicate of A082806.
2, 3, 5, 7, 11, 101, 131, 151, 191, 313, 353, 373, 757, 797, 919, 10301, 10501, 11311
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
353, a palindromic prime, is in the list since 3+5+3=11 is also a palindromic prime.
palQ[n_]:=FromDigits[Reverse[IntegerDigits[n]]]==n; t={}; Do[If[palQ[p=Prime[n]] && palQ[td=Total[IntegerDigits[p]]] && PrimeQ[td],AppendTo[t,p]],{n,6400000}]; t
a(6)= 337 is emirp. Sum of digits= 3+3+7= 13 which is prime. a(11)= 937 is emirp. Sum of digits= 9+3+7= 19 which is prime.
with(StringTools):KD:= proc() local a,b,d; a:=ithprime(n);b:=parse(Reverse(convert(a,string))); d:=add( i,i = convert((a), base, 10))(a);if a<>b and isprime(b) and isprime(d) then return(a):fi; end: seq(KD(),n=1..2000);
Select[Prime[Range[500]],!PalindromeQ[#]&&AllTrue[{IntegerReverse[#],Total[ IntegerDigits[ #]]},PrimeQ]&] (* Harvey P. Dale, Nov 01 2022 *)
Comments