A208361 "1-ply" palindromic primes; see Comments.
2, 3, 5, 7, 100030001, 100050001, 100060001, 100111001, 100131001, 100161001, 100404001, 100656001, 100707001, 100767001, 100888001, 100999001, 101030101, 101060101, 101141101, 101171101, 101282101, 101292101, 101343101, 101373101, 101414101, 101424101, 101474101
Offset: 1
Examples
2 is a palindromic prime of 1 digit, but 1 is not prime, therefore 2 is a 1-ply palindromic prime. 100050001 is a palindromic prime of 9 digits, but 9 is composite, therefore 100050001 is a 1-ply palindromic prime.
References
- Paulo Ribenboim, The New Book of Prime Number Records, Springer-Verlag New York Inc., 1996, p. 160-161.
Links
- Alvin Hoover Belt and T. D. Noe, Table of n, a(n) for n = 1..10000 (first 100 terms from Alvin Hoover Belt)
Crossrefs
Cf. A109830.
Programs
-
Mathematica
t = {2, 3, 5, 7}; n = 10000; While[n <= 99999 && Length[t] < 100, n = n + 1; d = IntegerDigits[n]; d2 = FromDigits[Join[d, Rest[Reverse[d]]]]; If[PrimeQ[d2], AppendTo[t, d2]]]; t (* T. D. Noe, Jun 03 2013 *)
Extensions
a(5)-a(26) from Charles R Greathouse IV, Feb 26 2012
Comments