A082850 Let S(0) = {}, S(n) = {S(n-1), S(n-1), n}; sequence gives S(infinity).
1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 5, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 5, 6, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 5, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1
Offset: 1
Examples
S(1) = {1}, S(2) = {1,1,2}, S(3) = {1,1,2,1,1,2,3}, etc.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..65535
Programs
-
Mathematica
Fold[Flatten[{#1, #1, #2}] &, {}, Range[5]] (* Birkas Gyorgy, Apr 13 2011 *) Flatten[Table[Length@Last@Split@IntegerDigits[2 n, 2], {n, 20}] /. {n_ ->Range[n]}] (* Birkas Gyorgy, Apr 13 2011 *)
-
Python
S = []; [S.extend(S + [n]) for n in range(1, 8)] print(S) # Michael S. Branicky, Jul 02 2022
-
Python
from itertools import count, islice def A082850_gen(): # generator of terms S = [] for n in count(1): yield from (m:=S+[n]) S += m # A082850_list = list(islice(A082850_gen(),20)) # Chai Wah Wu, Mar 06 2023
Formula
a(2^m - 1) = m.
If n = 2^m - 1 + k with 0 < k < 2^m, then a(n) = a(k). - Franklin T. Adams-Watters, Aug 16 2006
a(n) = log_2(A182105(n)) + 1. - Laurent Orseau, Jun 18 2019
a(n) = 1 + A215020(n). - Joerg Arndt, Mar 04 2025
Comments