cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Laurent Orseau

Laurent Orseau's wiki page.

Laurent Orseau has authored 1 sequences.

A224500 Number of ordered full binary trees with labels from a set of at most n labels.

Original entry on oeis.org

1, 4, 21, 184, 2425, 42396, 916909, 23569456, 701312049, 23697421300, 896146948741, 37491632258664, 1719091662617641, 85724109916049164, 4618556912276116125, 267351411229327901536, 16547551265061986364769, 1090506038795558789135076, 76234505063400211010327029
Offset: 1

Author

Laurent Orseau, Apr 08 2013

Keywords

Comments

a(n) is also the maximum number of different operations with n operands for a non-associative non-commutative binary operator.
a(n) is also the second column of A185946.

Examples

			For n=3, the a(3)=21 solutions are:
    a b c
    ab ba ac ca bc cb
    (ab)c a(bc)
    (ac)b a(cb)
    (ba)c b(ac)
    (bc)a b(ca)
    (ca)b c(ab)
    (cb)a c(ba)
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Binomial[n,k]*(2*k-2)! / (k-1)!, {k,n}]; Array[a,20] (* Giovanni Resta, Apr 08 2013 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x)*(1-sqrt(1-4*x))/2)) /* Joerg Arndt, Apr 10 2013 */
  • Racket
    #lang racket
    (require math/number-theory)
    (define (a n)
      (for/sum ([k (in-range 1 (+ n 1))])
        (* (binomial n k)
           (/ (factorial (* 2 (- k 1)))
              (factorial (- k 1))))))
    

Formula

a(n) = Sum_{k=1..n} permutations(n, k)*Catalan(k-1);
a(n) = Sum_{k=1..n} binomial(n, k)*quadruple_factorial(k-1);
a(n) = Sum_{k=1..n} n!(2k-2)!/((n-k)!k!(k-1)!).
a(1)=1, a(2)=4, a(n) = (4n-5)*a(n-1) - (4n-4)*a(n-2) + 1 for n > 2. - Giovanni Resta, Apr 08 2013
E.g.f.: exp(x)*(1-sqrt(1-4*x))/2. - Mark van Hoeij, Apr 10 2013
G.f.: hypergeom([1,1/2],[],4*x/(1-x))*x/(1-x)^2. - Mark van Hoeij, Apr 10 2013
a(n) ~ 2^(2*n-3/2)*n^(n-1)*exp(1/4-n). - Vaclav Kotesovec, Aug 16 2013