A224500 Number of ordered full binary trees with labels from a set of at most n labels.
1, 4, 21, 184, 2425, 42396, 916909, 23569456, 701312049, 23697421300, 896146948741, 37491632258664, 1719091662617641, 85724109916049164, 4618556912276116125, 267351411229327901536, 16547551265061986364769, 1090506038795558789135076, 76234505063400211010327029
Offset: 1
Examples
For n=3, the a(3)=21 solutions are: a b c ab ba ac ca bc cb (ab)c a(bc) (ac)b a(cb) (ba)c b(ac) (bc)a b(ca) (ca)b c(ab) (cb)a c(ba)
Links
- Laurent Orseau, Table for n, a(n) for n = 1..350
Programs
-
Mathematica
a[n_] := Sum[Binomial[n,k]*(2*k-2)! / (k-1)!, {k,n}]; Array[a,20] (* Giovanni Resta, Apr 08 2013 *)
-
PARI
x='x+O('x^66); Vec(serlaplace(exp(x)*(1-sqrt(1-4*x))/2)) /* Joerg Arndt, Apr 10 2013 */
-
Racket
#lang racket (require math/number-theory) (define (a n) (for/sum ([k (in-range 1 (+ n 1))]) (* (binomial n k) (/ (factorial (* 2 (- k 1))) (factorial (- k 1))))))
Formula
a(n) = Sum_{k=1..n} permutations(n, k)*Catalan(k-1);
a(n) = Sum_{k=1..n} binomial(n, k)*quadruple_factorial(k-1);
a(n) = Sum_{k=1..n} n!(2k-2)!/((n-k)!k!(k-1)!).
a(1)=1, a(2)=4, a(n) = (4n-5)*a(n-1) - (4n-4)*a(n-2) + 1 for n > 2. - Giovanni Resta, Apr 08 2013
E.g.f.: exp(x)*(1-sqrt(1-4*x))/2. - Mark van Hoeij, Apr 10 2013
G.f.: hypergeom([1,1/2],[],4*x/(1-x))*x/(1-x)^2. - Mark van Hoeij, Apr 10 2013
a(n) ~ 2^(2*n-3/2)*n^(n-1)*exp(1/4-n). - Vaclav Kotesovec, Aug 16 2013
Comments