A082894 a(n) is the closest number to 2^n which is divisible by n.
2, 4, 9, 16, 30, 66, 126, 256, 513, 1020, 2046, 4092, 8190, 16380, 32775, 65536, 131070, 262152, 524286, 1048580, 2097144, 4194300, 8388606, 16777224, 33554425, 67108860, 134217729, 268435468, 536870910, 1073741820, 2147483646
Offset: 1
Keywords
Examples
n=11: 2^11=2048 is between 2046=11.186 and 2035=11.185, closer to a(11)=2046; Powers of two are fixed points of this map.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A082894:=n->n*floor((floor(n/2)+2^n)/n); seq(A082894(k), k=1..100); # Wesley Ivan Hurt, Oct 29 2013
-
Mathematica
Table[n*Floor[(Floor[n/2]+2^n)/n], {n, 100}]
-
PARI
for(n=1,50, print1(n*floor( (floor(n/2)+2^n) / n ), ", ")) \\ G. C. Greubel, Aug 08 2017
-
Python
def A082894(n): return (m:=(1<
>1))-m%n # Chai Wah Wu, Apr 23 2025
Formula
a(n) = n*floor( (floor(n/2)+2^n) / n ).