cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082905 Modified Pascal-triangle, read by rows. All C(n,j) binomial coefficients are replaced by C(n/g, j/g), where g = gcd(n,j).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 2, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 3, 2, 3, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 4, 56, 2, 56, 4, 8, 1, 1, 9, 36, 3, 126, 126, 3, 36, 9, 1, 1, 10, 5, 120, 10, 2, 10, 120, 5, 10, 1, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 1, 12, 6, 4, 3, 792, 2, 792, 3, 4, 6, 12, 1
Offset: 0

Views

Author

Labos Elemer, Apr 23 2003

Keywords

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,  1;
  1,  3,  3,   1;
  1,  4,  2,   4,   1;
  1,  5, 10,  10,   5,   1;
  1,  6,  3,   2,   3,   6,  1;
  1,  7, 21,  35,  35,  21,  7,   1;
  1,  8,  4,  56,   2,  56,  4,   8, 1;
  1,  9, 36,   3, 126, 126,  3,  36, 9,  1;
  1, 10,  5, 120,  10,   2, 10, 120, 5, 10, 1;
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=0 or k=n then return 1;
        else return Binomial(n/Gcd(n,k), k/Gcd(n,k));
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Aug 30 2019
  • Mathematica
    Flatten[Table[Table[Binomial[n/GCD[n, j], j/GCD[n, j]], {j, 0, n}], {n, 1, 32}], 1]
  • PARI
    T(n,k) = my(g=gcd(n,k)); if (!g, g=1); binomial(n/g, k/g);
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", "))); \\ Michel Marcus, Aug 30 2019
    
  • Sage
    def T(n,k):
        if k==0 or k==n: return 1
        else: return binomial(n/gcd(n,k), k/gcd(n,k))
    [[T(n,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 30 2019
    

Extensions

More terms from Michel Marcus, Aug 30 2019