cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082907 A modified Pascal's triangle, read by rows, and modified as follows: binomial(n,j) is replaced by gcd(2^n, binomial(n,j)), i.e., the largest power of 2 dividing binomial(n,j).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 2, 4, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 4, 8, 2, 8, 4, 8, 1, 1, 1, 4, 4, 2, 2, 4, 4, 1, 1, 1, 2, 1, 8, 2, 4, 2, 8, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 4, 2, 4, 1, 8, 4, 8, 1, 4, 2, 4, 1, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1
Offset: 0

Views

Author

Labos Elemer, Apr 23 2003

Keywords

Comments

If N is a power of 2, then the first N rows are invariant under all 6 symmetries of an equilateral triangle. - Paul Boddington, Dec 17 2003

Examples

			Triangle read by rows:
            1,
           1,1,
          1,2,1,
         1,1,1,1,
        1,4,2,4,1,
       1,1,2,2,1,1,
      1,2,1,4,1,2,1,
     1,1,1,1,1,1,1,1,
    1,8,4,8,2,8,4,8,1,
   1,1,4,4,2,2,4,4,1,1,
  ...
For n = -1 + 2^k, such rows consist of all 1's since all binomial coefficients C(n,j) are odd.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Table[GCD[2^n, Binomial[n, j]], {j, 0, n}], {n, 0, 25}], 1]
    f[n_] := Denominator[CatalanNumber[n - 1]/2^(n - 1)]; T[n_, k_] := f[n]/(f[k]*f[n - k]); Table[T[n, k], {n, 0, 7}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 24 2016 *)

Formula

From Paul Boddington, Dec 17 2003: (Start)
T(n, j) = c(n)/(c(j)*c(n-j)) where c(n)=A060818(n).
T(n, j) = (b(j)*b(n-j))/b(n) where b(n)=A001316(n) (Gould's sequence). (End)

Extensions

Edited by Jon E. Schoenfield, Dec 24 2016