A082907 A modified Pascal's triangle, read by rows, and modified as follows: binomial(n,j) is replaced by gcd(2^n, binomial(n,j)), i.e., the largest power of 2 dividing binomial(n,j).
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 2, 4, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 4, 8, 2, 8, 4, 8, 1, 1, 1, 4, 4, 2, 2, 4, 4, 1, 1, 1, 2, 1, 8, 2, 4, 2, 8, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 4, 2, 4, 1, 8, 4, 8, 1, 4, 2, 4, 1, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1
Offset: 0
Examples
Triangle read by rows: 1, 1,1, 1,2,1, 1,1,1,1, 1,4,2,4,1, 1,1,2,2,1,1, 1,2,1,4,1,2,1, 1,1,1,1,1,1,1,1, 1,8,4,8,2,8,4,8,1, 1,1,4,4,2,2,4,4,1,1, ... For n = -1 + 2^k, such rows consist of all 1's since all binomial coefficients C(n,j) are odd.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
- E. Burlachenko, Fractal generalized Pascal matrices, arXiv:1612.00970 [math.NT], 2016. See p. 5.
- Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
Programs
-
Mathematica
Flatten[Table[Table[GCD[2^n, Binomial[n, j]], {j, 0, n}], {n, 0, 25}], 1] f[n_] := Denominator[CatalanNumber[n - 1]/2^(n - 1)]; T[n_, k_] := f[n]/(f[k]*f[n - k]); Table[T[n, k], {n, 0, 7}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 24 2016 *)
Formula
From Paul Boddington, Dec 17 2003: (Start)
T(n, j) = c(n)/(c(j)*c(n-j)) where c(n)=A060818(n).
T(n, j) = (b(j)*b(n-j))/b(n) where b(n)=A001316(n) (Gould's sequence). (End)
Extensions
Edited by Jon E. Schoenfield, Dec 24 2016
Comments