A082938 Number of solid 2-trees with 2n+1 edges.
1, 1, 1, 2, 5, 13, 49, 201, 940, 4643, 24037, 127859, 696365, 3858759, 21704863, 123619126, 711787259, 4137614454, 24256010068, 143271593982, 852001881614, 5097719884665, 30670572676389, 185466705697057
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- M. Bousquet and C. Lamathe, Enumeration of solid trees according to edge number and edge degree distribution, Discr. Math., 298 (2005), 115-141.
Programs
-
Mathematica
u[n_, k_, r_] := (r*Binomial[k*n + r, n]/(k*n + r)); e[n_, k_] := Sum[ u[j, k, 1 + (n - 2*j)*k/2], {j, 0, n/2}] c[n_, k_] := If[n == 0, 1, (DivisorSum[n, EulerPhi[n/#]*Binomial[k*#, #] &] + DivisorSum[GCD[n-1, k], EulerPhi[#]*Binomial[n*k/#, (n-1)/#] &])/(k*n) - Binomial[k*n, n]/(n*(k - 1) + 1)]; T[n_, k_] := (1/2)*(c[n, k] + If[n == 0, 1, If[OddQ[k], If[OddQ[n], 2*u[ Quotient[n, 2], k, (k + 1)/2], u[n/2, k, 1] + u[n/2 - 1, k, k]], e[n, k] + If[OddQ[n], u[Quotient[n, 2], k, k/2]]]/2]) /. Null -> 0; a[n_] := T[n, 3]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd and A303929 *)
Formula
a(n) ~ 3^(3*n - 1/2) / (sqrt(Pi) * n^(5/2) * 2^(2*n + 3)). - Vaclav Kotesovec, Jun 01 2022
Extensions
More terms from Vladeta Jovovic, Sep 11 2004
Comments