cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A137651 Triangle read by rows: T(n,k) is the number of primitive (aperiodic) word structures of length n using exactly k different symbols.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 6, 6, 1, 0, 15, 25, 10, 1, 0, 27, 89, 65, 15, 1, 0, 63, 301, 350, 140, 21, 1, 0, 120, 960, 1700, 1050, 266, 28, 1, 0, 252, 3024, 7770, 6951, 2646, 462, 36, 1, 0, 495, 9305, 34095, 42524, 22827, 5880, 750, 45, 1, 0, 1023, 28501, 145750, 246730, 179487, 63987, 11880, 1155, 55, 1
Offset: 1

Views

Author

Gary W. Adamson, Feb 01 2008

Keywords

Comments

Row sums = A082951: (1, 1, 4, 13, 51, 197, ...).

Examples

			First few rows of the triangle are:
  1;
  0,   1;
  0,   3,   1;
  0,   6,   6,    1;
  0,  15,  25,   10,    1;
  0,  27,  89,   65,   15,   1;
  0,  63, 301,  350,  140,  21,  1;
  0, 120, 960, 1700, 1050, 266, 28, 1;
  ...
From _Andrew Howroyd_, Apr 03 2017: (Start)
Primitive word structures are:
n=1: a => 1
n=2: ab => 1
n=3: aab, aba, abb; abc => 3 + 1
n=4: aaab, aaba, aabb, abaa, abba, abbb => 6 (k=2)
     aabc, abac, abbc, abca, abcb, abcc => 6 (k=3)
(End)
		

Crossrefs

Columns 2-6 are A056278 (or A000740), A056279, A056280, A056281, A056282.
Row sums are A082951.

Programs

  • Mathematica
    rows = 10; t[n_, k_] := If[Divisible[n, k], MoebiusMu[n/k], 0]; A054525 = Array[t, {rows, rows}]; A008277 = Array[StirlingS2, {rows, rows}]; T = A054525 . A008277; Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 07 2017 *)
  • PARI
    T(n,k)={sumdiv(n, d, moebius(n/d)*stirling(d, k, 2))} \\ Andrew Howroyd, Aug 09 2018
    
  • Sage
    # uses[DivisorTriangle from A327029]
    # Computes an additional column (1,0,0,...)
    # at the left hand side of the triangle.
    DivisorTriangle(moebius, stirling_number2, 10) # Peter Luschny, Aug 24 2019

Formula

A054525 * A008277 as infinite lower triangular matrices. A054525 = Mobius transform, A008277 = Stirling2 triangle.
T(n,k) = Sum{d|n} mu(n/d) * Stirling2(d, k). - Andrew Howroyd, Aug 09 2018

Extensions

Name changed and a(46)-a(66) from Andrew Howroyd, Aug 09 2018

A284841 Number of primitive (aperiodic) palindromic structures of length n using an infinite alphabet.

Original entry on oeis.org

1, 0, 1, 1, 4, 3, 14, 13, 50, 47, 202, 197, 876, 862, 4134, 4125, 21146, 21092, 115974, 115922, 678554, 678367, 4213596, 4213381, 27644432, 27643560, 190899270, 190898444, 1382958544, 1382954355, 10480142146, 10480138007, 82864869600, 82864848657
Offset: 1

Views

Author

Andrew Howroyd, Apr 03 2017

Keywords

Comments

Permuting the symbols will not change the structure.

Examples

			n = 1: a => 1
n = 3: aba => 1
n = 4: abba => 1
n = 5: aabaa, ababa, abbba, abcba => 4
n = 6: aabbaa, abbbba, abccba => 3
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Row sums of A284826.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] BellB[Ceiling[#/2]]&];
    Array[a, 34] (* Jean-François Alcover, Jun 06 2017 *)
  • PARI
    bell(n) = sum(k=0,n,stirling(n,k,2));
    a(n) = sumdiv(n,d, moebius(n/d) * bell(ceil(d/2)));

Formula

a(n) = Sum_{k=1..ceiling(n/2)} A284826(n,k).
a(n) = Sum_{d | n} mu(n/d) * Bell(ceiling(d/2)).

A034743 a(n) = Sum_{d | n} mu(n/d) * Bell(d-1).

Original entry on oeis.org

1, 0, 1, 4, 14, 50, 202, 872, 4138, 21132, 115974, 678514, 4213596, 27644234, 190899306, 1382957668, 10480142146, 82864865614, 682076806158, 5832742183906, 51724158235168, 474869816040776, 4506715738447322
Offset: 1

Views

Author

Keywords

Comments

A kind of Dirichlet convolution of mu(n) with Bell numbers.

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[MoebiusMu[n/d]*BellB[d - 1], {d, Divisors[n]}];
    Array[a, 23] (* Jean-François Alcover, Sep 08 2019 *)
  • PARI
    bell(n) = sum(k=0,n,stirling(n,k,2));
    a(n) = sumdiv(n,d, moebius(n/d) * bell(d-1)); \\ Andrew Howroyd, Apr 03 2017

Extensions

More precise definition from Andrew Howroyd, Apr 03 2017
Showing 1-3 of 3 results.