cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082975 Denominators of continued fraction convergents to (sqrt(37)-4)/3.

Original entry on oeis.org

1, 1, 3, 10, 13, 36, 121, 157, 435, 1462, 1897, 5256, 17665, 22921, 63507, 213442, 276949, 767340, 2578969, 3346309, 9271587, 31161070, 40432657, 112026384, 376511809, 488538193, 1353588195, 4549302778, 5902890973, 16355084724
Offset: 0

Views

Author

Gary W. Adamson, May 27 2003

Keywords

Crossrefs

Numerators are A082962.
Cf. A041061.

Programs

  • Mathematica
    Denominator[Convergents [(Sqrt[37]-4)/3, 40]] (* Vincenzo Librandi, Feb 01 2014 *)
    a[ n_] := If[ n < -1, SeriesCoefficient[ (1 - 2*x + 3*x^2 + x^3 + x^4) / (1 + 12*x^3 - x^6), {x, 0, -2 - n}], SeriesCoefficient[ (1 + x + 3*x^2 - 2*x^3 + x^4) / (1 - 12*x^3 - x^6), {x, 0, n}]]; (* Michael Somos, Dec 07 2017 *)
  • PARI
    {a(n) = if( n<-1, n = -2-n; polcoeff( (1 - 2*x + 3*x^2 + x^3 + x^4) / (1 + 12*x^3 - x^6) + x * O(x^n), n), polcoeff( (1 + x + 3*x^2 - 2*x^3 + x^4) / (1 - 12*x^3 - x^6) + x * O(x^n), n))}; /* Michael Somos, Dec 07 2017 */

Formula

Empirical g.f.: 1 + x*(1+3*x+10*x^2+x^3+x^5)/(1-12*x^3-x^6). - Colin Barker, Jan 04 2012
From Michael Somos, Dec 07 2017: (Start)
G.f.: (1 + x + 3*x^2 - 2*x^3 + x^4) / (1 - 12*x^3 - x^6).
Let s := sqrt(37), c := 6 + s, b(0) = 1/2 + 2/s, b(1) = 1/2 + 7/2/s, b(2) := 3/2 + 9/s, then a(3*n + k) ~ b(k) * c^n for k=0, 1, 2.
0 = a(n)*(+3*a(n+1) +5*a(n+2) -3*a(n+3)) +a(n+1)*(+7*a(n+1) +10*a(n+2) -7*a(n+3)) +a(n+2)*(-5*a(n+2) +3*a(n+3)) for all n in Z.
a(n+3) = 12*a(n) + a(n-3), a(n+1) = a(n-1) + (1+mod(n, 3))*a(n) for all n in Z.
a(3*n - 1) = -(-1)^n * a(-3*n - 1) = 3 * A041061(n-1) for all n in Z. (End)

Extensions

Edited by Don Reble, Nov 04 2005
Prepended a(0)=1 from Vincenzo Librandi, Feb 01 2014