cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082996 a(n) = card{ x <= n : bigomega(x) = 4 }.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1

Views

Author

Benoit Cloitre, May 30 2003

Keywords

Crossrefs

Partial sums of A101637.

Programs

  • PARI
    a(n)=sum(i=1,n,bigomega(i)==4)
    
  • PARI
    a(n)=my(j,s);forprime(p=2,(n+.5)^(1/4),forprime(q=p,(n/p+.5)^(1/3),j=primepi(q)-2;forprime(r=q,sqrtint(n\(p*q)),s+=primepi(n\(p*q*r))-j++)));s \\ Charles R Greathouse IV, Mar 21 2012
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A082996(n): return int(sum(primepi(n//(k*m*r))-c for a,k in enumerate(primerange(integer_nthroot(n,4)[0]+1)) for b,m in enumerate(primerange(k,integer_nthroot(n//k,3)[0]+1),a) for c,r in enumerate(primerange(m,isqrt(n//(k*m))+1),b))) # Chai Wah Wu, Mar 29 2025

Formula

a(n) ~ (1/6)*(n/log(n))*log(log(n))^3.