A120035 Number of 4-almost primes f such that 2^n < f <= 2^(n+1).
0, 0, 0, 1, 1, 5, 7, 20, 37, 81, 173, 344, 736, 1461, 3065, 6208, 12643, 25662, 52014, 105487, 212566, 430007, 865650, 1744136, 3508335, 7053390, 14167804, 28441899, 57065447, 114418462, 229341261, 459442819, 920097130, 1841946718, 3686197728
Offset: 0
Keywords
Examples
(2^4, 2^5] there is one semiprime, namely 24. 16 was counted in the previous entry.
Programs
-
Mathematica
FourAlmostPrimePi[n_] := Sum[ PrimePi[n/(Prime@i*Prime@j*Prime@k)] - k + 1, {i, PrimePi[n^(1/4)]}, {j, i, PrimePi[(n/Prime@i)^(1/3)]}, {k, j, PrimePi@Sqrt[n/(Prime@i*Prime@j)]}]; t = Table[ FourAlmostPrimePi[2^n], {n, 0, 37}]; Rest@t - Most@t
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A120035(n): x = 1<
Chai Wah Wu, Mar 28 2025
Comments