cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083024 Molien series for action of SL(3,C) on ternary forms of degree 4.

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 19, 29, 44, 67, 98, 139, 199, 275, 375, 509, 678, 890, 1165, 1501, 1916, 2431, 3053, 3801, 4711, 5788, 7063, 8580, 10353, 12420, 14841, 17633, 20850, 24565, 28807, 33641, 39161, 45404, 52455, 60427, 69372, 79392, 90627, 103143, 117065, 132561
Offset: 0

Views

Author

Benoit Cloitre, Jun 01 2003

Keywords

Comments

These are the coefficients of the expansion in powers of z^4, the other coefficients being zero.

References

  • J-M. Kantor, Où en sont les mathématiques. La formule de Molien-Weyl, SMF, Vuibert, p. 79

Crossrefs

Cf. A008615.

Programs

  • Maple
    seq(coeff(series( (1 + x^3 + x^4 + x^5 + 2*x^6 + 3*x^7 + 2*x^8 + 3*x^9 + 4*x^10 + 3*x^11 + 4*x^12 + 4*x^13 + 3*x^14 + 4*x^15 + 3*x^16 + 2*x^17 + 3*x^18 + 2*x^19 + x^20 + x^21 + x^25)/(1 - x^1 - x^2 + x^5 + 2*x^7 - 2*x^9 - x^12 + x^14 - x^16 + x^18 + 2*x^21 - 2*x^23 - x^25 + x^28 + x^29 - x^30), x, n+1), x, n), n = 0..45); # Georg Fischer, Jan 24 2021
  • PARI
    a(n)=polcoeff((1+z^9+z^12+z^15+2*z^18+3*z^21+2*z^24+3*z^27+4*z^30+3*z^33 +4*z^36+4*z^39+3*z^42+4*z^45+3*z^48+2*z^51+3*z^54+2*z^57+z^60+z^63+z^75) /(1-z^3)/(1-z^6)/(1-z^9)/(1-z^12)/(1-z^15)/(1-z^18)/(1- z^27)+O(z^(n+1)),n)

Formula

G.f.: (1 + z^9 + z^12 + z^15 + 2*z^18 + 3*z^21 + 2*z^24 + 3*z^27 + 4*z^30 + 3*z^33 + 4*z^36 + 4*z^39 + 3*z^42 + 4*z^45 + 3*z^48 + 2*z^51 + 3*z^54 + 2*z^57 + z^60 + z^63 + z^75)/(1-z^3)/(1-z^6)/(1-z^9)/(1-z^12)/(1-z^15)/(1-z^18)/(1-z^27).