A083025 Number of primes congruent to 1 modulo 4 dividing n (with multiplicity).
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 2, 1, 1, 0, 1, 1
Offset: 1
References
- David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 61.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a083025 1 = 0 a083025 n = length [x | x <- a027746_row n, mod x 4 == 1] -- Reinhard Zumkeller, Jan 10 2012
-
Maple
A083025 := proc(n) a := 0 ; for f in ifactors(n)[2] do if op(1,f) mod 4 = 1 then a := a+op(2,f) ; end if; end do: a ; end proc: # R. J. Mathar, Dec 16 2011
-
Mathematica
f[n_]:=Plus@@Last/@Select[If[n==1,{},FactorInteger[n]],Mod[#[[1]],4]==1&]; Table[f[n],{n,100}] (* Ray Chandler, Dec 18 2011 *)
-
PARI
A083025(n)=sum(i=1,#n=factor(n)~,if(n[1,i]%4==1,n[2,i])) \\ M. F. Hasler, Apr 16 2012
Formula
Totally additive with a(2) = 0, a(p) = 1 if p == 1 (mod 4), and a(p) = 0 if p == 3 (mod 4). - Amiram Eldar, Jun 17 2024