cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083025 Number of primes congruent to 1 modulo 4 dividing n (with multiplicity).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 2, 1, 1, 0, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 29 2001

Keywords

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 61.

Crossrefs

First differs from A046080 at n=65.
Cf. A001222, A007814, A027746, A065339 (== 3 (mod 4)), A378879 (=2,3 (mod 4)), A005089 (without multiplicity).

Programs

  • Haskell
    a083025 1 = 0
    a083025 n = length [x | x <- a027746_row n, mod x 4 == 1]
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Maple
    A083025 := proc(n)
        a := 0 ;
        for f in ifactors(n)[2] do
            if op(1,f) mod 4 = 1 then
                a := a+op(2,f) ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Dec 16 2011
  • Mathematica
    f[n_]:=Plus@@Last/@Select[If[n==1,{},FactorInteger[n]],Mod[#[[1]],4]==1&]; Table[f[n],{n,100}] (* Ray Chandler, Dec 18 2011 *)
  • PARI
    A083025(n)=sum(i=1,#n=factor(n)~,if(n[1,i]%4==1,n[2,i]))  \\ M. F. Hasler, Apr 16 2012

Formula

a(n) = A001222(n) - A007814(n) - A065339(n).
Totally additive with a(2) = 0, a(p) = 1 if p == 1 (mod 4), and a(p) = 0 if p == 3 (mod 4). - Amiram Eldar, Jun 17 2024