cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083040 Number of divisors of n that are <= 4.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4
Offset: 1

Views

Author

Daniele A. Gewurz (gewurz(AT)mat.uniroma1.it) and Francesca Merola (merola(AT)mat.uniroma1.it), May 06 2003

Keywords

Comments

Periodic of period 12. Parker vector of the wreath product of S_4 and S, the symmetric group of a countable set.

Crossrefs

Formula

G.f.: x/(1-x)+x^2/(1-x^2)+x^3/(1-x^3)+x^4/(1-x^4).
a(n) = a(n-12) = a(-n).
a(n) = 25/12 - (3/4)*( - 1)^n - 1/2*sin(Pi*n/2) - (1/3)*cos(2*Pi*n/3) - (1/3)*3^(1/2)*sin(2*Pi*n/3) [From Richard Choulet, Dec 12 2008]
a(n) = sum(k=1..1, cos(n*(k - 1)/1*2*Pi)/1) + sum(k=1..2, cos(n*(k - 1)/2*2*Pi)/2) + sum(k=1..3, cos(n*(k - 1)/3*2*Pi)/3) + sum(k=1..4, cos(n*(k - 1)/4*2*Pi)/4). - Mats Granvik, Sep 09 2012