cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A083039 Number of divisors of n that are <= 3.

Original entry on oeis.org

1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3
Offset: 1

Views

Author

Daniele A. Gewurz (gewurz(AT)mat.uniroma1.it) and Francesca Merola (merola(AT)mat.uniroma1.it), May 06 2003

Keywords

Comments

Periodic of period 6. Parker vector of the wreath product of S_3 and S, the symmetric group of a countable set.

Examples

			The divisors of 6 are 1, 2, 3 and 6. Of those divisors, 1, 2 and 3 are <= 3. That's three divisors, therefore, a(6) = 3. - _David A. Corneth_, Sep 30 2017
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-1, 0, 1, 1},{1, 2, 2, 2},90] (* Ray Chandler, Aug 26 2015 *)
  • PARI
    a(n)=[3,1,2,2,2,1][n%6+1];

Formula

G.f.: x/(1-x) + x^2/(1-x^2) + x^3/(1-x^3).
a(n) = a(n-6) = a(-n).
a(n) = 11/6 - (1/2)*(-1)^n - (1/3)*cos(2*Pi*n/3) - (1/3)*3^(1/2)*sin(2*Pi*n/3). - Richard Choulet, Dec 12 2008
a(n) = Sum_{k=1..1} cos(n*(k - 1)/1*2*Pi)/1 + Sum_{k=1..2} cos(n*(k - 1)/2*2*Pi)/2 + Sum_{k=1..3} cos(n*(k - 1)/3*2*Pi)/3. - Mats Granvik, Sep 09 2012
a(n) = log_2(gcd(n,2) + gcd(n,6)). - Gary Detlefs, Feb 15 2014
a(n) = Sum_{d|n, d<=3} 1. - Wesley Ivan Hurt, Oct 30 2023

A338648 Number of divisors of n which are greater than 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 5, 1, 3, 2, 2, 3, 5, 1, 2, 2, 5, 1, 5, 1, 3, 4, 2, 1, 6, 2, 4, 2, 3, 1, 5, 3, 5, 2, 2, 1, 8, 1, 2, 4, 4, 3, 5, 1, 3, 2, 6, 1, 8, 1, 2, 4, 3, 3, 5, 1, 7, 3, 2, 1, 8, 3, 2, 2, 5, 1, 9, 3, 3, 2, 2, 3, 8, 1, 4, 4, 6, 1, 5, 1, 5, 6, 2, 1, 8, 1, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 4 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(5 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 5, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
  • PARI
    a(n) = sumdiv(n, d, d>4); \\ Michel Marcus, Apr 22 2021; corrected Jun 13 2022
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=5, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(5*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=5} (1 - x^k)^(1/k) ).
a(n) = A000005(n) - A083040(n).
G.f.: Sum_{k>=5} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 37/12), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(4) prepended by David A. Corneth, Jun 13 2022

A138553 Table read by rows: T(n,k) is the number of divisors of k that are <= n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 2, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 3, 1, 3, 1, 4, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 4, 1, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 5, 1, 2, 2, 3, 2, 4, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 1, 4, 1, 4, 2, 2, 1, 5
Offset: 1

Views

Author

Keywords

Comments

Suggested by a question from Eric Desbiaux.
The row lengths are the lengths before the pattern for n repeats.
Antidiagonal sums A070824. [From Eric Desbiaux, Dec 10 2009]

Examples

			The first few rows start:
1, [A000012]
1, 2, [A000034]
1, 2, 2, 2, 1, 3, [A083039]
1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, [A083040]
		

Crossrefs

Row lengths A003418, row sums A025529, frequencies in rows A096180.

Programs

  • PARI
    lista(nrows) = {for (n=1, nrows, for (k=1, lcm(vector(n, i, i)), print1(sumdiv(k, d, d <=n), ", ");); print(););} \\ Michel Marcus, Jun 19 2014

Formula

T(n,k) = sum_{i|k, i<=n} 1.

Extensions

Definition corrected by Franklin T. Adams-Watters, Jun 19 2014
Showing 1-3 of 3 results.