cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083058 Number of eigenvalues equal to 1 of n X n matrix A(i,j)=1 if j=1 or i divides j.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66
Offset: 1

Views

Author

Michael Somos, Apr 18 2003

Keywords

Comments

All numbers occur at least once, but terms > 1 of A000295 appear twice. - Robert G. Wilson v, Apr 19 2006
It appears that a(n) = Sum_{k=0..n-1} (1 + (-1)^A000108(k))/2 (n > 1). - Paul Barry, Mar 31 2008
Barry's observation above is true because A000108 obtains odd values only at points (2^j)-1 (A000225) and here the repeated values (A000295) occur precisely at positions given by A000225 and A000079. - Antti Karttunen, Aug 17 2013
a(n)+1 gives a lower bound for nonzero terms of A228086 and A228087. - Antti Karttunen, Aug 17 2013

Crossrefs

Programs

  • Maple
    A083058 := proc(n)
        if n = 1 then
            1;
        else
            n-floor(log[2](n))-1 ;
        end if;
    end proc:
    seq(A083058(n),n=1..40) ; # R. J. Mathar, Jul 23 2017
  • Mathematica
    a[1] = 1; a[n_] := n - Floor[Log[2, n]] - 1;
    Array[a, 100] (* Jean-François Alcover, Feb 27 2019 *)
  • PARI
    a(n)=if(n<2,n>0,n-floor(log(n)/log(2))-1)
    
  • PARI
    a(n)= if(n<1, 0, valuation( subst( charpoly( matrix(n, n, i, j, (j==1) || (0==j%i))), x, x+1), x))
    
  • Python
    def a(n): return n - n.bit_length() + (n == 1)  # Matthew Andres Moreno, Jan 04 2024
  • Scheme
    (define (A083058 n) (if (< n 2) n (- n (A070939 n)))) ;; Antti Karttunen, Aug 17 2013
    

Formula

a(n) = n - A070939(n), n > 1.
a(1)=1, else a(n)=b(n) with b(0)=0, b(2n)=b(n)+n-1, b(2n+1)=b(n)+n. - Ralf Stephan, Oct 11 2003
Except for a(1), a(n) = n - 1 - floor(log(2,n)). - Robert G. Wilson v, Apr 19 2006
It seems that a(n) = A182220(n+1)-1 for all n > 1. - Antti Karttunen, Aug 17 2013