A083058 Number of eigenvalues equal to 1 of n X n matrix A(i,j)=1 if j=1 or i divides j.
1, 0, 1, 1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..8192
- J. B. Conrey, The Riemann Hypothesis, Notices Amer. Math. Soc., 50 (No. 3, March 2003), 341-353. See p. 347.
- Will Dana, Eigenvalues of the Redheffer Matrix and their relation to the Mertens function (2015), Theorem 5.
- Ralf Stephan, Some divide-and-conquer sequences with (relatively) simple ordinary generating functions.
- Ralf Stephan, Table of generating functions.
Programs
-
Maple
A083058 := proc(n) if n = 1 then 1; else n-floor(log[2](n))-1 ; end if; end proc: seq(A083058(n),n=1..40) ; # R. J. Mathar, Jul 23 2017
-
Mathematica
a[1] = 1; a[n_] := n - Floor[Log[2, n]] - 1; Array[a, 100] (* Jean-François Alcover, Feb 27 2019 *)
-
PARI
a(n)=if(n<2,n>0,n-floor(log(n)/log(2))-1)
-
PARI
a(n)= if(n<1, 0, valuation( subst( charpoly( matrix(n, n, i, j, (j==1) || (0==j%i))), x, x+1), x))
-
Python
def a(n): return n - n.bit_length() + (n == 1) # Matthew Andres Moreno, Jan 04 2024
-
Scheme
(define (A083058 n) (if (< n 2) n (- n (A070939 n)))) ;; Antti Karttunen, Aug 17 2013
Formula
a(n) = n - A070939(n), n > 1.
a(1)=1, else a(n)=b(n) with b(0)=0, b(2n)=b(n)+n-1, b(2n+1)=b(n)+n. - Ralf Stephan, Oct 11 2003
Except for a(1), a(n) = n - 1 - floor(log(2,n)). - Robert G. Wilson v, Apr 19 2006
It seems that a(n) = A182220(n+1)-1 for all n > 1. - Antti Karttunen, Aug 17 2013
Comments