cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A083075 Square array read by antidiagonals: T(n,k) = (k*(2*k+3)^n + 1)/(k+1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 7, 33, 63, 1, 1, 9, 61, 229, 313, 1, 1, 11, 97, 547, 1601, 1563, 1, 1, 13, 141, 1065, 4921, 11205, 7813, 1, 1, 15, 193, 1831, 11713, 44287, 78433, 39063, 1, 1, 17, 253, 2893, 23801, 128841, 398581, 549029, 195313, 1, 1, 19, 321
Offset: 0

Views

Author

Paul Barry, Apr 23 2003

Keywords

Examples

			Array begins:
  1     1     1     1     1 ...
  1     3    13    63   313 ...
  1     5    33   229  1601 ...
  1     7    61   547  4921 ...
  1     9    97  1065 11713 ...
  ...
		

Crossrefs

Columns include odds, A082109, A083079.
Diagonals include A083079, A083080, A083081, A083082.

Programs

  • Maple
    T := proc(n,k) return (k*(2*k+3)^n+1)/(k+1): end: seq(seq(T(k,n-k),k=0..n),n=0..10); # Nathaniel Johnston, Jun 26 2011

A083076 Third row of number array A083075.

Original entry on oeis.org

1, 5, 33, 229, 1601, 11205, 78433, 549029, 3843201, 26902405, 188316833, 1318217829, 9227524801, 64592673605, 452148715233, 3165041006629, 22155287046401, 155087009324805, 1085609065273633, 7599263456915429, 53194844198408001
Offset: 0

Views

Author

Paul Barry, Apr 23 2003

Keywords

Comments

Binomial transform of A067411. Inverse binomial transform of A082412.
Trinomial transform of Jacobsthal numbers A001045. - Paul Barry, Sep 10 2007

Crossrefs

Programs

Formula

a(n) = (2*7^n + 1)/3.
G.f.: (1-3*x)/((1-x)*(1-7*x)).
E.g.f.: (2*exp(7*x) + exp(x))/3.
a(n) = Sum_{k=0..2*n} trinomial(n,k)*Fibonacci(k+1), where trinomial(n,k) are the trinomial coefficients (A027907). - Paul Barry, Sep 10 2007
a(n) = 7*a(n-1) - 2, a(n) = 8*a(n-1) - 7*a(n-2). - Vincenzo Librandi, Nov 06 2011

A083078 6th row of number array A083075.

Original entry on oeis.org

1, 11, 141, 1831, 23801, 309411, 4022341, 52290431, 679775601, 8837082811, 114882076541, 1493466995031, 19415070935401, 252395922160211, 3281146988082741, 42654910845075631, 554513840985983201
Offset: 0

Views

Author

Paul Barry, Apr 23 2003

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{14,-13},{1,11},30] (* Harvey P. Dale, Dec 27 2013 *)

Formula

a(n) = (5*13^n + 1)/6.
G.f.: (1-3*x)/((1-x)*(1-13*x)).
E.g.f.: (5*exp(13*x) + exp(x))/6.
a(n) = 13*a(n-1) - 2; a(n) = 14*a(n-1) - 13*a(n-2). - Vincenzo Librandi, Nov 11 2011

A199753 4*11^n+1.

Original entry on oeis.org

5, 45, 485, 5325, 58565, 644205, 7086245, 77948685, 857435525, 9431790765, 103749698405, 1141246682445, 12553713506885, 138090848575725, 1518999334332965, 16708992677662605, 183798919454288645, 2021788113997175085
Offset: 0

Views

Author

Vincenzo Librandi, Nov 10 2011

Keywords

Programs

  • Magma
    [4*11^n+1: n in [0..30]];
  • Mathematica
    4*11^Range[0,20]+1 (* or *) LinearRecurrence[{12,-11},{5,45},20] (* Harvey P. Dale, Mar 28 2012 *)

Formula

a(n) = 5*A083077
a(n) = 11*a(n-1)-10.
a(n) = 12*a(n-1)-11*a(n-2).
G.f.: 5*(1-3*x)/((1-x)*(1-11*x)).
Showing 1-4 of 4 results.