A083089 Numbers that are congruent to {0, 2, 4, 6, 7, 9, 11} mod 12.
0, 2, 4, 6, 7, 9, 11, 12, 14, 16, 18, 19, 21, 23, 24, 26, 28, 30, 31, 33, 35, 36, 38, 40, 42, 43, 45, 47, 48, 50, 52, 54, 55, 57, 59, 60, 62, 64, 66, 67, 69, 71, 72, 74, 76, 78, 79, 81, 83, 84, 86, 88, 90, 91, 93, 95, 96, 98, 100, 102, 103, 105, 107, 108, 110
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..2000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).
Crossrefs
A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): this sequence
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Phrygian mode (E): A083034
Locrian mode (B): A082977
Chords:
Major chord: A083030
Minor chord: A083031
Dominant seventh chord: A083032
Programs
-
Magma
[n : n in [0..150] | n mod 12 in [0, 2, 4, 6, 7, 9, 11]]; // Wesley Ivan Hurt, Jul 20 2016
-
Maple
A083089:=n->12*floor(n/7)+[0, 2, 4, 6, 7, 9, 11][(n mod 7)+1]: seq(A083089(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016
-
Mathematica
Select[Range[0,200],MemberQ[{0,2,4,6,7,9,11},Mod[#,12]]&] (* or *) LinearRecurrence[{1,0,0,0,0,0,1,-1},{0,2,4,6,7,9,11,12},90] (* Harvey P. Dale, Mar 29 2016 *)
-
PARI
a(n) = 2*(n-1)-2*(n-1)\7; \\ Altug Alkan, Sep 21 2018
-
PARI
x='x+O('x^99); concat(0, Vec(x^2*(x^4+x^3+2)*(1+x+x^2)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018
Formula
G.f.: x^2*(x^4 + x^3 + 2)*(1 + x + x^2)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jul 20 2016: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
a(n) = (84*n - 63 - 2*(n mod 7) - 2*((n + 1) mod 7) + 5*((n + 2) mod 7) - 2*((n + 3) mod 7) - 2*((n + 4) mod 7) - 2*((n + 5) mod 7) + 5*((n + 6) mod 7))/49.
a(7k) = 12k - 1, a(7k - 1) = 12k - 3, a(7k-2) = 12k - 5, a(7k-3) = 12k - 6, a(7k-4) = 12k - 8, a(7k-5) = 12k - 10, a(7k-6) = 12k - 12. (End)
a(n) = 2*n - 2 - floor(2*(n - 1)/7). - Wesley Ivan Hurt, Sep 29 2017
a(n) = a(n-7) + 12 for n > 7. - Jianing Song, Sep 22 2018
Comments