cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083095 a(n) = A083094(n)/4.

Original entry on oeis.org

0, 2, 5, 6, 14, 15, 18, 20, 41, 42, 45, 47, 54, 56, 59, 60, 122, 123, 126, 128, 135, 137, 140, 141, 162, 164, 167, 168, 176, 177, 180, 182, 365, 366, 369, 371, 378, 380, 383, 384, 405, 407, 410, 411, 419, 420, 423, 425, 486, 488, 491, 492, 500
Offset: 1

Views

Author

Benoit Cloitre, Apr 22 2003

Keywords

Comments

Is this the same as A083097? - Andrew S. Plewe, May 30 2007

Crossrefs

Programs

  • Mathematica
    Select[Range[0,2000], OddQ[Sum[Mod[Binomial[#,j],3],{j,0,#}]]&]/4 (* Paul F. Marrero Romero, Dec 28 2024 *)
  • Python
    def A083095(n): return int(bin(((m:=n-1).bit_count()&1)+(m<<1))[2:],3)>>1 # Chai Wah Wu, Jun 26 2025

Formula

Apparently (2*a(n)) mod 3 = A010060(n-1), the Thue-Morse sequence.
Numbers k such that C(4*k, 2*k) == 1 (mod 3). - Benoit Cloitre, Jul 30 2003
Numbers k such that the base-3 digits of 2k contains no 2's, i.e. a(n) = A074939(n-1)/2. - Chai Wah Wu, Jun 26 2025

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 29 2003