A083101 a(n) = 2*a(n-1) + 10*a(n-2), with a(0) = 1, a(1) = 12.
1, 12, 34, 188, 716, 3312, 13784, 60688, 259216, 1125312, 4842784, 20938688, 90305216, 389997312, 1683046784, 7266066688, 31362601216, 135385869312, 584397750784, 2522654194688, 10889285897216, 47005113741312, 202903086454784, 875857310322688, 3780745485193216
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,10).
Programs
-
Magma
I:=[1,12]; [n le 2 select I[n] else 2*Self(n-1) + 10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
-
Mathematica
CoefficientList[Series[(1+10x)/(1-2x-10x^2), {x, 0, 25}], x] LinearRecurrence[{2, 10},{1, 12},22] (* Ray Chandler, Sep 23 2015 *)
-
PARI
x='x+O('x^30); Vec((1+10*x)/(1-2*x-10*x^2)) \\ G. C. Greubel, Jan 08 2018
Formula
a(n+1) = a(n) + 11*A083102(n).
G.f.: (1+10*x)/(1-2*x-10*x^2).
If p[1]=1, and p[i]=11, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=det A. - Milan Janjic, Apr 29 2010
Comments