cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083230 Number of repunit divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 01 2003

Keywords

Comments

Differs from A043284 (maximal run length in decimal expansion) from a(100) on. - M. F. Hasler, Oct 18 2019

Examples

			n = 110, divisors are {1, 2, 5, 10, 11, 22, 55, 110} with two repunits: 1 and 11, therefore a(110) = 2.
n = 111, divisors are {1, 3, 37, 111} with two repunits: 1 and 111, therefore a(111) = 2.
n = 111111, divisors are {1, 3, 7, 11, 13, 21, 33, 37, 39, 77, 91, 111, 143, 231, 259, 273, 407, 429, 481, 777, 1001, 1221, 1443, 2849, 3003, 3367, 5291, 8547, 10101, 15873, 37037, 111111} with four repunits: 1, 11, 111 and 111111, therefore a(111111) = 4.
		

Crossrefs

Programs

  • Mathematica
    A083230[n_]:=Count[IntegerDigits[Divisors[n]],{1..}];Array[A083230,100] (* Paolo Xausa, Sep 27 2023 *)
  • PARI
    a(n)={my(s=0, k=1); while(k<=n, if(n%k==0, s++); k=10*k+1); s} \\ Andrew Howroyd, Aug 07 2018

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A065444. - Amiram Eldar, Apr 17 2025