A083234 a(n) = (3*10^n + 2^n)/4.
1, 8, 76, 752, 7504, 75008, 750016, 7500032, 75000064, 750000128, 7500000256, 75000000512, 750000001024, 7500000002048, 75000000004096, 750000000008192, 7500000000016384, 75000000000032768, 750000000000065536
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (12,-20).
Programs
-
Magma
[(3*10^n+2^n)/4: n in [0..25]]; // Vincenzo Librandi, Jun 29 2011
-
Mathematica
Table[(3*10^n + 2^n)/4, {n, 0, 20}] (* Wesley Ivan Hurt, Apr 24 2021 *)
-
PARI
a(n)=(3*10^n+2^n)/4 \\ Charles R Greathouse IV, Jun 29 2011
Formula
a(n) = (3*10^n + 2^n)/4.
G.f.: (1-4*x)/((1-10*x)*(1-2*x)).
E.g.f.: (3*exp(10*x) + exp(2*x))/4.
a(n) = 12*a(n-1)-20*a(n-2). - Wesley Ivan Hurt, Apr 24 2021
Comments