A083287 Continued fraction expansion of K(3), a constant related to the Josephus problem.
1, 1, 1, 1, 1, 1, 5, 10, 19, 1, 4, 4, 4, 3, 10, 1, 42, 2, 23, 33, 1, 4, 7, 1, 12, 1, 1, 2, 9, 2, 11, 3, 4, 1, 1, 3, 2, 4, 25, 3, 1, 16, 5, 10, 1, 1, 1, 3, 1, 1, 1, 3, 2, 2, 1, 1, 1, 2, 3, 2, 1, 3, 4, 3, 1, 1, 117, 2, 1, 12, 4, 1, 4, 3, 3, 15, 1, 5, 16, 7, 2, 7, 21, 1, 3, 1, 2, 2, 2, 1, 1, 1, 1
Offset: 0
Links
- A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, Glasgow Math. J. 33, 235-240, 1991.
- Index entries for sequences related to the Josephus Problem
Programs
-
Mathematica
For[p = 1; nn = 10^4; n = 1, n <= nn, n++, p = Ceiling[3/2*p]]; p/(3/2)^nn // ContinuedFraction[#, 93] & (* Jean-François Alcover, Jul 11 2013, after Pari *)
-
PARI
p=1; N=10^4; for(n=1, N, p=ceil(3/2*p)); c=(p/(3/2)^N)+0. \\ This gives K(3) not the sequence!
Extensions
Offset changed by Andrew Howroyd, Aug 07 2024
Comments