A083323 a(n) = 3^n - 2^n + 1.
1, 2, 6, 20, 66, 212, 666, 2060, 6306, 19172, 58026, 175100, 527346, 1586132, 4766586, 14316140, 42981186, 129009092, 387158346, 1161737180, 3485735826, 10458256052, 31376865306, 94134790220, 282412759266, 847255055012
Offset: 0
Examples
From _Gus Wiseman_, Dec 10 2019: (Start) Also the number of achiral set-systems on n vertices, where a set-system is achiral if it is not changed by any permutation of the covered vertices. For example, the a(0) = 1 through a(3) = 20 achiral set-systems are: 0 0 0 0 {1} {1} {1} {2} {2} {12} {3} {1}{2} {12} {1}{2}{12} {13} {23} {123} {1}{2} {1}{3} {2}{3} {1}{2}{3} {1}{2}{12} {1}{3}{13} {2}{3}{23} {12}{13}{23} {1}{2}{3}{123} {12}{13}{23}{123} {1}{2}{3}{12}{13}{23} {1}{2}{3}{12}{13}{23}{123} BII-numbers of these set-systems are A330217. Fully chiral set-systems are A330282, with covering case A330229. (End)
Links
- M. H. Albert, M. D. Atkinson, and V. Vatter, Inflations of geometric grid classes: three case studies, arXiv:1209.0425 [math.CO], 2012.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Jay Pantone, The Enumeration of Permutations Avoiding 3124 and 4312, arXiv:1309.0832 [math.CO], 2013.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
Programs
-
GAP
List([0..30], n -> 3^n-2^n+1); # G. C. Greubel, Feb 13 2019
-
Magma
[3^n-2^n+1: n in [0..30]]; // G. C. Greubel, Feb 13 2019
-
Mathematica
LinearRecurrence[{6,-11,6}, {1,2,6}, 30] (* G. C. Greubel, Feb 13 2019 *)
-
PARI
a(n)=3^n-2^n+1 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[3^n-2^n+1 for n in range(30)] # G. C. Greubel, Feb 13 2019
Formula
G.f.: (1-4*x+5*x^2)/((1-x)*(1-2*x)*(1-3*x)).
E.g.f.: exp(3*x) - exp(2*x) + exp(x).
Row sums of triangle A134319. - Gary W. Adamson, Oct 19 2007
a(n) = 2*StirlingS2(n+1,3) + StirlingS2(n+1,2) + 1. - Ross La Haye, Jan 10 2008
Comments