cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083333 a(n) = 10*a(n-2) - 16*a(n-4) for n>=4, with a(0)=a(1)=1, a(2)=6, a(3)=10.

Original entry on oeis.org

1, 1, 6, 10, 44, 84, 344, 680, 2736, 5456, 21856, 43680, 174784, 349504, 1398144, 2796160, 11184896, 22369536, 89478656, 178956800, 715828224, 1431655424, 5726623744, 11453245440, 45812985856, 91625967616, 366503878656
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Apr 24 2003

Keywords

Crossrefs

Cf. A016131, A082412 (bisections).

Programs

  • Magma
    I:=[1,1,6,10]; [n le 4 select I[n] else 10*Self(n-2) -16*Self(n-4): n in [1..41]]; // G. C. Greubel, Dec 27 2024
    
  • Mathematica
    CoefficientList[Series[(1+x-4x^2)/(1-10x^2+16x^4), {x, 0, 30}], x]
    LinearRecurrence[{0,10,0,-16},{1,1,6,10},30] (* Harvey P. Dale, Aug 04 2024 *)
  • SageMath
    def A083333(n): return 2^((n-1)/2)*( (n%2)*(2^(n+1) -1) + ((n+1)%2)*sqrt(2)*(2^(n+1) +1))/3
    print([A083333(n) for n in range(41)]) # G. C. Greubel, Dec 27 2024

Formula

G.f.: (1+x-4*x^2)/(1-10*x^2+16*x^4).
Limit_{n -> oo} A083332(n)/a(n) = 3.
a(n) = A001045(n+1)*A016116(n). - R. J. Mathar, Jul 08 2009
From G. C. Greubel, Dec 27 2024: (Start)
a(n) = (1/3)*2^((n-3)/2)*( (1-(-1)^n)*(2^(n+1) - 1) + (1+(-1)^n)*sqrt(2)*(2^(n+1) + 1) ).
E.g.f.: (1/3)*(2*cosh(2*sqrt(2)*x) + cosh(sqrt(2)*x)) + (1/(3*sqrt(2)))*(2*sinh(2*sqrt(2)*x) - sinh(sqrt(2)*x)). (End)