cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083336 a(n) = 4*a(n-2) - a(n-4).

Original entry on oeis.org

3, 3, 9, 12, 33, 45, 123, 168, 459, 627, 1713, 2340, 6393, 8733, 23859, 32592, 89043, 121635, 332313, 453948, 1240209, 1694157, 4628523, 6322680, 17273883, 23596563, 64467009, 88063572, 240594153, 328657725, 897909603, 1226567328, 3351044259, 4577611587, 12506267433
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Apr 26 2003

Keywords

Comments

a(n)/A002531(n+1) converges to sqrt(3).

Programs

  • Mathematica
    CoefficientList[Series[(3+3x-3x^2)/(1-4x^2+x^4), {x, 0, 30}], x]
    Transpose[NestList[Flatten[{Rest[#],4#[[3]]-First[#]}]&, {3,3,9,12}, 50]][[1]]  (* Harvey P. Dale, Mar 26 2011 *)
    LinearRecurrence[{0, 4, 0, -1}, {3, 3, 9, 12}, 30] (* T. D. Noe, Mar 26 2011 *)

Formula

a(2*n) = A082841(n) = a(2*n-1) + 3*A002531(2*n).
a(2*n+1) = (a(2*n) + 3*A002531(2*n+1)) / 2.
G.f.: (3 + 3*x - 3*x^2) / (1 - 4*x^2 + x^4).