cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083342 Decimal expansion of average deviation of the total number of prime factors.

Original entry on oeis.org

1, 0, 3, 4, 6, 5, 3, 8, 8, 1, 8, 9, 7, 4, 3, 7, 9, 1, 1, 6, 1, 9, 7, 9, 4, 2, 9, 8, 4, 6, 4, 6, 3, 8, 2, 5, 4, 6, 7, 0, 3, 0, 7, 9, 8, 4, 3, 4, 4, 3, 8, 5, 2, 5, 4, 5, 0, 3, 0, 7, 0, 2, 8, 1, 2, 8, 1, 6, 3, 3, 5, 3, 9, 3, 8, 6, 6, 0, 1, 6, 0, 7, 5, 4, 7, 9, 4, 1, 3, 9, 0, 2, 5, 7, 5, 6, 7, 4, 6, 9, 3, 8
Offset: 1

Views

Author

Eric W. Weisstein, Sep 25 2003

Keywords

Comments

Or, decimal expansion of constant B2 from the summatory function of the restricted divisor function.
The constant A in the asymptotic formula Sum_{prime p <= n} 1/(p-1) = log(log(n)) + A + O(1/log(n)) (Jakimczuk, 2017). - Amiram Eldar, Mar 18 2024

Examples

			1.03465388189743791161979429846463825467030798434438525450307...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, pp. 94-98.
  • József Sándor and Borislav Crstici, Handbook of Number Theory II, Kluwer Academic Publishers, 2004, p. 155, Chapter V, 1) b).

Crossrefs

Programs

  • Mathematica
    digits = 102; Mp = EulerGamma - NSum[PrimeZetaP[n]/n - PrimeZetaP[n], {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 3*digits]; RealDigits[Mp, 10, digits] // First (* Jean-François Alcover, Sep 02 2015 *)

Formula

Equals A077761 + A136141. - Jean-François Alcover, Sep 02 2015
Equals gamma + Sum_{p prime} (log(1-1/p) + 1/(p-1)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 25 2021
From Amiram Eldar, Mar 18 2024: (Start)
Equals gamma + Sum_{k>=2} phi(k) * log(zeta(k)) / k, where phi = A000010.
Equals gamma - Sum_{p prime} 1/(p-1)^2 + Sum_{k>=2} J_2(k) * log(zeta(k)) / k, where J_2 = A007434.
Both formulas are from Jakimczuk (2017). (End)