A083343 Decimal expansion of constant B3 (or B_3) related to the Mertens constant.
1, 3, 3, 2, 5, 8, 2, 2, 7, 5, 7, 3, 3, 2, 2, 0, 8, 8, 1, 7, 6, 5, 8, 2, 8, 7, 7, 6, 0, 7, 1, 0, 2, 7, 7, 4, 8, 8, 3, 8, 4, 5, 9, 4, 8, 9, 0, 4, 2, 4, 2, 2, 6, 6, 1, 7, 8, 7, 1, 3, 0, 8, 9, 9, 7, 5, 7, 3, 4, 0, 0, 4, 1, 7, 1, 9, 3, 0, 4, 0, 1, 8, 6, 8, 7, 5, 4, 8, 0, 4, 5, 5, 1, 4, 1, 6, 8, 6, 2
Offset: 1
Examples
1.3325822757332208817658287760710277488384594890424226617871308997573400417193...
References
- Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
- S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 94-98.
- Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 2nd ed., Chelsea, 1953, pp. 197-203.
- József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter VI, p. 199.
Links
- David Broadhurst, Table of n, a(n) for n = 1..300
- David Broadhurst, The Mertens constant, 2005.
- David Broadhurst, 1000 digits.
- Henri Cohen, High-precision computation of Hardy-Littlewood constants, (1998).
- Henri Cohen, High-precision computation of Hardy-Littlewood constants. [pdf copy, with permission]
- Pierre Dusart, Explicit estimates of some functions over primes, The Ramanujan Journal, Vol. 45 (2018), pp. 227-251.
- Pierre Dusart, On the divergence of the sum of prime reciprocals, WSEAS Transactions on Math. (2023) Vol.22, 508-513.
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 196.
- Sh. T. Ishmukhametov and F. F. Sharifullina, On distribution of semiprime numbers, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, No. 8, pp. 53-59; English translation, Russian Mathematics, Vol. 58, No. 8 (2014), pp. 43-48.
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Ill. Journ. Math., Vol. 6 (1962), pp. 64-94.
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers (scan of some key pages from an ancient annotated photocopy).
- D. R. Ward, Some Series Involving Euler's Function, Journal of the London Mathematical Society, Vol. 1, No. 4 (1927), pp. 210-214.
- Eric Weisstein's World of Mathematics, Mertens Constant.
- Don Zagier, Newman's short proof of the prime number theorem, The American Mathematical Monthly, Vol. 104, No. 8 (1997), pp. 705-708.
Crossrefs
See also A238114 = 1 + B_3.
Programs
-
Mathematica
digits = 99; B3 = EulerGamma - NSum[PrimeZetaP'[n], {n, 2, 10^4}, WorkingPrecision -> 2 digits, NSumTerms -> 200]; RealDigits[B3, 10, digits][[1]] (* Jean-François Alcover, Apr 25 2016 *)
Formula
Equals lim_{x->oo} (log x - Sum_{p <= x} log(p)/p). - Dick Boland, Mar 09 2008
Equals EulerGamma - Sum_{n >= 2} P'(n), where P'(n) is the prime zeta P function derivative. - Jean-François Alcover, Apr 25 2016
Equals lim_{n->oo} Sum_{k=1..n} mu(k)^2/phi(k) - log(n) (Ward, 1927). - Amiram Eldar, Mar 05 2021
Extensions
Edited by N. J. A. Sloane, Mar 05 2014
Comments