A083349 Least positive integers not appearing previously such that the self-convolution cube-root of this sequence consists entirely of integers.
1, 3, 6, 4, 9, 12, 7, 15, 18, 2, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 5, 54, 57, 10, 60, 63, 8, 66, 69, 72, 75, 78, 13, 81, 84, 87, 90, 93, 96, 99, 102, 16, 105, 108, 19, 111, 114, 11, 117, 120, 14, 123, 126, 22, 129, 132, 135, 138, 141, 25, 144, 147, 150, 153, 156, 28
Offset: 0
Keywords
Examples
The self-convolution cube of A083350 equals this sequence: {1, 1, 1, -1, 3, 0, -6, 17, -17, -19, 114, ...}^3 = {1, 3, 6, 4, 9, 12, 7, 15, 18, ...}. A083350(x)^3 = A(x) = 1 + 3x + 6x^2 + 4x^3 + 9x^4 + 12x^5 + 7x^6 + ...
Links
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
Programs
-
Mathematica
a[n_] := a[n] = Module[{A, P, t}, A = 1+3x; P = Table[0, 3(n+1)]; P[[1]] = 1; P[[3]] = 2; For[j = 2, j <= n, j++, For[k = 2, k <= 3(n+1), k++, If[P[[k]] == 0, t = Coefficient[(A + k x^j + x^2 O[x]^j)^(1/3), x, j]; If[Denominator[t] == 1, P[[k]] = j+1; A = A + k*x^j; Break[]]]]]; Coefficient[A + x O[x]^n, x, n]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 66}] (* Jean-François Alcover, Jul 25 2018, translated from PARI *)
-
PARI
{a(n)=local(A=1+3*x,P=vector(3*(n+1)));P[1]=1;P[3]=2; for(j=2,n, for(k=2,3*(n+1),if(P[k]==0, t=polcoeff((A+k*x^j+x^2*O(x^j))^(1/3),j); if(denominator(t)==1,P[k]=j+1;A=A+k*x^j;break)))); return(polcoeff(A+x*O(x^n),n))}
Comments